Abstract

In this letter, a new backlight dimming technique that considers perceptual image quality based on a structural similarity (SSIM) metric is proposed. Conventional algorithms cannot accurately control the optimal trade-off between image quality and power consumption; image quality is therefore degraded in some images. In contrast, the proposed algorithm calculates the allowable target error based on the SSIM metric in real time using the relation function between SSIM and the mean square error (MSE). It can therefore optimally reduce power consumption while preserving the perceptual image quality over the target level. Experimental results show that the proposed algorithm successfully maintains the target SSIM for all test images and sequences. Additionally, the average SSIM of the proposed algorithm is up to 0.034 higher than those of the benchmark algorithms.

© 2014 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. H. Chen, J. Sung, T. Ha, Y. Park, "Locally pixel-compensated backlight dimming for improving static contrast on LED backlight LCDs," SID Int. Symp. Dig. Tech. Papers (2007) pp. 1339-1342.
  2. A. Ballestad, T. Wan, H. Seetzen, "Metrics for local-dimming artifacts in high-dynamic-range LCDs," Inf. Display 25, (2009).
  3. M. H. Crawford, "LEDs for solid-state lighting: Performance challenges and recent advances," IEEE J. Sel. Topics Quantum Electron. 15, 1028-1040 (2009).
  4. N. Tansu, H. Zhao, G. Liu, X. H. Li, J. Zhang, H. Tong, Y. K. Ee, "III-nitride photonics," IEEE Photon. J. 2, 241-248 (2010).
  5. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, N. Tansu, "Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells," Opt. Express 19, A991-A1007 (2011).
  6. S. Choi, M. H. Ji, J. Kim, H. J. Kim, M. M. Satter, P. D. Yoder, J. H. Ryou, R. D. Dupuis, A. M. Fischer, F. A. Ponce, "Efficiency droop due to electron spill-over and limited hole injection in III-nitride visible light-emitting diodes employing lattice-matched InAlN electron blocking layers," Appl. Phys. Lett. 101, 161110-1-161110-5 (2012).
  7. G. Y. Liu, J. Zhang, C. K. Tan, N. Tansu, "Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum wells light-emitting diodes," IEEE Photon. J. 5, (2013) Art. 2201011.
  8. S.-J. Kang, Y. H. Kim, "Multi-histogram-based backlight dimming for low power liquid crystal displays," Journal of Display Tech. 7, 544-549 (2011).
  9. S.-J. Kang, Y. H. Kim, "Image integrity-based gray-level error control for low power liquid crystal displays," IEEE Trans. Consumer Electronics 55, 2401-2406 (2009).
  10. N. Chang, I. Choi, H. Shim, "DLS: Dynamic backlight luminance scaling of liquid crystal display," IEEE Trans. Very Large Scale Integr. Syst. 12, 837-846 (2004).
  11. M. Ruggiero, A. Bartolini, L. Benini, "DBS4video: Dynamic luminance backlight scaling based on multi-histogram frame characterization for video streaming application," Proc. ACM Int. Conf. Embedded Software (2008) pp. 109-118.
  12. P. C. Hsiu, C. H. Lin, C. K. Hsieh, "Dynamic backlight scaling optimization for mobile streaming applications," Proc. IEEE/ACM Int. Symp. Low Power Elec. Design (2011) pp. 309-314.
  13. Y. Lai, Y. Lai, P. Chen, "Content-based LCD backlight power reduction with image contrast enhancement using histogram analysis," J. Display Technol. 7, 550-555 (2011).
  14. A. Bartolini, M. Ruggiero, L. Benini, "Visual quality analysis for dynamic backlight scaling in LCD systems," Proc. IEEE Des. Autom. & Test in Eur. Conf. & Exhib. (2009) pp. 1428-1433.
  15. T. H. Li, L. Zhengguo, T. Y. Han, S. Rahardja, Y. Chuohuo, "A perceptually relevant MSE-based image quality," IEEE Trans. Image Process. 22, 4447-4459 (2013).
  16. S.-J. Kang, "Processor-based backlight dimming using computation reduction technique," J. Display Technol. 9, 819-824 (2013).
  17. A. Iranli, H. Fatemi, M. Pedram, "HEBS: Histogram equalization for backlight scaling," Proc. Conf. Design, Autom. Test in Eur. (2005) pp. 346-351.
  18. LG Display“LP064V1 Liquid Crystal Display,” Rep. LP064V1 (2001).
  19. ISO12640International Organization for StandardizationGenevaSwitzerland http://www.iso.org/ Accessed date: Accessed date: Nov. 7, 2013.
  20. Kodak Lossless True Color Image Suite http://r0k.us/graphics/kodak/ Accessed date: Accessed date: Nov. 7, 2013.
  21. G. Marchionini, G. Geisler, "The open video digital library," Digital Library Mag. 8, (2002).
  22. X. Wang, D. Zhang, "A new tongue colorchecker design by space representation for precise correction," IEEE J. Biomed. Health Inform. 17, 381-391 (2013).
  23. X. Wang, D. Zhang, "An optimized tongue image color correction scheme," IEEE Trans. Inf. Technol. Biomed. 14, 1355-1364 (2010).
  24. S. I. Cho, S. J. Kang, Y. H. Kim, "Image quality-aware backlight dimming with color and detail enhancement techniques," J. Display Technol. 9, 112-121 (2013).

2013 (5)

G. Y. Liu, J. Zhang, C. K. Tan, N. Tansu, "Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum wells light-emitting diodes," IEEE Photon. J. 5, (2013) Art. 2201011.

T. H. Li, L. Zhengguo, T. Y. Han, S. Rahardja, Y. Chuohuo, "A perceptually relevant MSE-based image quality," IEEE Trans. Image Process. 22, 4447-4459 (2013).

S.-J. Kang, "Processor-based backlight dimming using computation reduction technique," J. Display Technol. 9, 819-824 (2013).

X. Wang, D. Zhang, "A new tongue colorchecker design by space representation for precise correction," IEEE J. Biomed. Health Inform. 17, 381-391 (2013).

S. I. Cho, S. J. Kang, Y. H. Kim, "Image quality-aware backlight dimming with color and detail enhancement techniques," J. Display Technol. 9, 112-121 (2013).

2012 (1)

S. Choi, M. H. Ji, J. Kim, H. J. Kim, M. M. Satter, P. D. Yoder, J. H. Ryou, R. D. Dupuis, A. M. Fischer, F. A. Ponce, "Efficiency droop due to electron spill-over and limited hole injection in III-nitride visible light-emitting diodes employing lattice-matched InAlN electron blocking layers," Appl. Phys. Lett. 101, 161110-1-161110-5 (2012).

2011 (3)

Y. Lai, Y. Lai, P. Chen, "Content-based LCD backlight power reduction with image contrast enhancement using histogram analysis," J. Display Technol. 7, 550-555 (2011).

S.-J. Kang, Y. H. Kim, "Multi-histogram-based backlight dimming for low power liquid crystal displays," Journal of Display Tech. 7, 544-549 (2011).

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, N. Tansu, "Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells," Opt. Express 19, A991-A1007 (2011).

2010 (2)

N. Tansu, H. Zhao, G. Liu, X. H. Li, J. Zhang, H. Tong, Y. K. Ee, "III-nitride photonics," IEEE Photon. J. 2, 241-248 (2010).

X. Wang, D. Zhang, "An optimized tongue image color correction scheme," IEEE Trans. Inf. Technol. Biomed. 14, 1355-1364 (2010).

2009 (3)

A. Ballestad, T. Wan, H. Seetzen, "Metrics for local-dimming artifacts in high-dynamic-range LCDs," Inf. Display 25, (2009).

M. H. Crawford, "LEDs for solid-state lighting: Performance challenges and recent advances," IEEE J. Sel. Topics Quantum Electron. 15, 1028-1040 (2009).

S.-J. Kang, Y. H. Kim, "Image integrity-based gray-level error control for low power liquid crystal displays," IEEE Trans. Consumer Electronics 55, 2401-2406 (2009).

2004 (1)

N. Chang, I. Choi, H. Shim, "DLS: Dynamic backlight luminance scaling of liquid crystal display," IEEE Trans. Very Large Scale Integr. Syst. 12, 837-846 (2004).

2002 (1)

G. Marchionini, G. Geisler, "The open video digital library," Digital Library Mag. 8, (2002).

Appl. Phys. Lett. (1)

S. Choi, M. H. Ji, J. Kim, H. J. Kim, M. M. Satter, P. D. Yoder, J. H. Ryou, R. D. Dupuis, A. M. Fischer, F. A. Ponce, "Efficiency droop due to electron spill-over and limited hole injection in III-nitride visible light-emitting diodes employing lattice-matched InAlN electron blocking layers," Appl. Phys. Lett. 101, 161110-1-161110-5 (2012).

Digital Library Mag. (1)

G. Marchionini, G. Geisler, "The open video digital library," Digital Library Mag. 8, (2002).

IEEE J. Biomed. Health Inform. (1)

X. Wang, D. Zhang, "A new tongue colorchecker design by space representation for precise correction," IEEE J. Biomed. Health Inform. 17, 381-391 (2013).

IEEE J. Sel. Topics Quantum Electron. (1)

M. H. Crawford, "LEDs for solid-state lighting: Performance challenges and recent advances," IEEE J. Sel. Topics Quantum Electron. 15, 1028-1040 (2009).

IEEE Trans. Consumer Electronics (1)

S.-J. Kang, Y. H. Kim, "Image integrity-based gray-level error control for low power liquid crystal displays," IEEE Trans. Consumer Electronics 55, 2401-2406 (2009).

IEEE Photon. J. (2)

N. Tansu, H. Zhao, G. Liu, X. H. Li, J. Zhang, H. Tong, Y. K. Ee, "III-nitride photonics," IEEE Photon. J. 2, 241-248 (2010).

G. Y. Liu, J. Zhang, C. K. Tan, N. Tansu, "Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum wells light-emitting diodes," IEEE Photon. J. 5, (2013) Art. 2201011.

IEEE Trans. Image Process. (1)

T. H. Li, L. Zhengguo, T. Y. Han, S. Rahardja, Y. Chuohuo, "A perceptually relevant MSE-based image quality," IEEE Trans. Image Process. 22, 4447-4459 (2013).

IEEE Trans. Inf. Technol. Biomed. (1)

X. Wang, D. Zhang, "An optimized tongue image color correction scheme," IEEE Trans. Inf. Technol. Biomed. 14, 1355-1364 (2010).

IEEE Trans. Very Large Scale Integr. Syst. (1)

N. Chang, I. Choi, H. Shim, "DLS: Dynamic backlight luminance scaling of liquid crystal display," IEEE Trans. Very Large Scale Integr. Syst. 12, 837-846 (2004).

Inf. Display (1)

A. Ballestad, T. Wan, H. Seetzen, "Metrics for local-dimming artifacts in high-dynamic-range LCDs," Inf. Display 25, (2009).

J. Display Technol. (1)

S. I. Cho, S. J. Kang, Y. H. Kim, "Image quality-aware backlight dimming with color and detail enhancement techniques," J. Display Technol. 9, 112-121 (2013).

J. Display Technol. (2)

S.-J. Kang, "Processor-based backlight dimming using computation reduction technique," J. Display Technol. 9, 819-824 (2013).

Y. Lai, Y. Lai, P. Chen, "Content-based LCD backlight power reduction with image contrast enhancement using histogram analysis," J. Display Technol. 7, 550-555 (2011).

Journal of Display Tech. (1)

S.-J. Kang, Y. H. Kim, "Multi-histogram-based backlight dimming for low power liquid crystal displays," Journal of Display Tech. 7, 544-549 (2011).

Opt. Express (1)

Other (8)

H. Chen, J. Sung, T. Ha, Y. Park, "Locally pixel-compensated backlight dimming for improving static contrast on LED backlight LCDs," SID Int. Symp. Dig. Tech. Papers (2007) pp. 1339-1342.

M. Ruggiero, A. Bartolini, L. Benini, "DBS4video: Dynamic luminance backlight scaling based on multi-histogram frame characterization for video streaming application," Proc. ACM Int. Conf. Embedded Software (2008) pp. 109-118.

P. C. Hsiu, C. H. Lin, C. K. Hsieh, "Dynamic backlight scaling optimization for mobile streaming applications," Proc. IEEE/ACM Int. Symp. Low Power Elec. Design (2011) pp. 309-314.

A. Bartolini, M. Ruggiero, L. Benini, "Visual quality analysis for dynamic backlight scaling in LCD systems," Proc. IEEE Des. Autom. & Test in Eur. Conf. & Exhib. (2009) pp. 1428-1433.

A. Iranli, H. Fatemi, M. Pedram, "HEBS: Histogram equalization for backlight scaling," Proc. Conf. Design, Autom. Test in Eur. (2005) pp. 346-351.

LG Display“LP064V1 Liquid Crystal Display,” Rep. LP064V1 (2001).

ISO12640International Organization for StandardizationGenevaSwitzerland http://www.iso.org/ Accessed date: Accessed date: Nov. 7, 2013.

Kodak Lossless True Color Image Suite http://r0k.us/graphics/kodak/ Accessed date: Accessed date: Nov. 7, 2013.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.