Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Display Technology
  • Vol. 10,
  • Issue 11,
  • pp. 971-974
  • (2014)

Solution Processed Organic Thin-Film Transistors With Hybrid Low/High Voltage Operation

Not Accessible

Your library or personal account may give you access

Abstract

Solution processed bottom-gate bottom-contact organic thin-film transistors (OTFTs) being able to sustain hybrid low/high voltage operation were realized with the maximum processing temperature not exceeding 100 $^{\circ}$ C. In the devices, a channel engineering approach is used to achieve low voltage operation, by inducing phase separation with the blend of 6, 13-bis(triisopropylsilylethynyl)-pentacene and polystyrene to form an ultra-thin high crystalline channel. Since the approach doesn't rely on enlarging the gate dielectric capacitance, the low voltage OTFT with a relatively thick dielectric layer was shown to be able to sustain high voltage operation. Moreover, the ultra-small dielectric capacitance can help to reduce the parasitic capacitance in the data and scan lines of the display panel. The device technology is shown to be promising for developing flexible/rollable display systems on plastic substrates, where a relatively high voltage is required for the pixel driving circuits, and a low voltage is preferred for the logic circuits in the peripheral drivers.

© 2014 IEEE

PDF Article
More Like This
Channel-length-dependent performance of photosensitive organic field-effect transistors

Yingquan Peng, Fangzhi Guo, Hongquan Xia, Wenli Lv, Lei Sun, Sunan Xu, Huabiao Zhu, Xinda Chen, Chen Liu, Ying Wang, and Feiping Lu
Appl. Opt. 58(6) 1319-1326 (2019)

Low-voltage thin-film electroluminescent devices with low-resistivity stacked insulators

Jia-Yu Zhang, Pei-Fu Gu, Xu Liu, and Jin-Fa Tang
Appl. Opt. 36(3) 545-550 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved