Abstract

A ray-tracing model is developed for accurate optical simulation of plasma display panel (PDP). Thorough spectroscopic characterization of materials properties is carried out, based on which four types of material models of PDP layer materials are developed and incorporated in the cell model. Four test panels with different bus electrode structures are fabricated, the geometrical structure of which is measured and reflected in the ray-tracing model. Plasma fluid simulation is carried out to derive the spatial distribution of the ultraviolet light in the cell and the total number of Xe species. Simulation results show that the simulated panel reflectances are consistent with the experimental values within 3% error. In addition, the normalized angular luminance profiles obtained by simulation agree well with the measured results. However, the on-axis luminance value of the PDP panel, which is affected by both optical and plasma simulation, cannot be predicted accurately by this study.

© 2013 IEEE

PDF Article

References

  • View by:
  • |
  • |

  1. H. Doyeux, "Color plasma displays: Status of cell structure designs," SID'00 Tech. Dig. (2000) pp. 212-215.
  2. L. F. Weber, "The promise of plasma displays for HDTV," SID'00 Tech. Dig. (2000) pp. 402-405.
  3. J. P. Boeuf, "Plasma display panels: Physics, recent developments and key issues," J. Phys. D: Appl. Phys. 36, R53-R79 (2003).
  4. G. Oversluizen, S. T. de Zwart, T. Dekker, "Plasma display panel design for simultaneous high efficacy and high luminance," J. Appl. Phys. 103, 013301 (2008).
  5. K. Suzuki, Y. Kawanami, S. Ho, N. Uemura, Y. Yajima, N. Kouchi, Y. Hatano, "Theoretical formulation of the vacuum ultraviolet production efficiency in a plasma display panel," J. Appl. Phys. 88, 5605-5611 (2000).
  6. Y. Ikeda, K. Suzuki, H. Fukumoto, J. P. Verboncoeur, P. J. Christenson, C. K. Birdsall, M. Shibata, M. Ishigaki, "Two-dimensional particle simulation of a sustained discharge in an alternating current plasma display panel," J. Appl. Phys. 88, 6216-6223 (2000).
  7. H. C. Kim, S. S. Yang, J. K. Lee, "Three-dimensional self-consistent radiation transport model for the fluid simulation of plasma display panel cell," J. Appl. Phys. 93, 9516-9522 (2003).
  8. T. Shiga, S. Mikoshiba, "Monte Carlo simulation of imprisonment of Xe resonant photons and luminous efficiency considerations of colour plasma displays," J. Phys. D: Appl. Phys. 37, 1221-1227 (2004).
  9. H. S. Bae, J. K. Kim, K.-W. Whang, "The effects of sustain electrode gap variation on the luminous efficacy in coplanar-type AC plasma display panel under low- and high-Xe content conditions," IEEE Tran. Plasma Sci. 35, 462-472 (2007).
  10. I. C. Song, S. W. Hwang, D.-H. Kim, H.-J. Lee, C.-H. Park, H. J. Lee, "The effects of electrode structures on the luminous efficacy of micro dielectric barrier discharges," IEEE Tran. Plasma Sci. 37, 1572-1580 (2009).
  11. S. Jung, S. Eom, M. Oh, J. Kang, "Optimization of geometries in PDP cells by optical simulation," Proc. ASID'06 (2006) pp. 373-375.
  12. H. Park, Studies About Geometries in PDP Cells with a New UV Source M.S. Dept. Education Dankuk Univ.Yongin-siKorea (2007).
  13. H. J. Lee, H. J. Yoon, J. K. Lee, "Simulation of photons from plasmas for the applications to display devices," Comp. Phys. Commun. 177, 106-107 (2007).
  14. “Core Module User's Guide” LightTools (Ver. 7.3)Optical Research Associates (2010).

2009 (1)

I. C. Song, S. W. Hwang, D.-H. Kim, H.-J. Lee, C.-H. Park, H. J. Lee, "The effects of electrode structures on the luminous efficacy of micro dielectric barrier discharges," IEEE Tran. Plasma Sci. 37, 1572-1580 (2009).

2008 (1)

G. Oversluizen, S. T. de Zwart, T. Dekker, "Plasma display panel design for simultaneous high efficacy and high luminance," J. Appl. Phys. 103, 013301 (2008).

2007 (2)

H. J. Lee, H. J. Yoon, J. K. Lee, "Simulation of photons from plasmas for the applications to display devices," Comp. Phys. Commun. 177, 106-107 (2007).

H. S. Bae, J. K. Kim, K.-W. Whang, "The effects of sustain electrode gap variation on the luminous efficacy in coplanar-type AC plasma display panel under low- and high-Xe content conditions," IEEE Tran. Plasma Sci. 35, 462-472 (2007).

2004 (1)

T. Shiga, S. Mikoshiba, "Monte Carlo simulation of imprisonment of Xe resonant photons and luminous efficiency considerations of colour plasma displays," J. Phys. D: Appl. Phys. 37, 1221-1227 (2004).

2003 (2)

J. P. Boeuf, "Plasma display panels: Physics, recent developments and key issues," J. Phys. D: Appl. Phys. 36, R53-R79 (2003).

H. C. Kim, S. S. Yang, J. K. Lee, "Three-dimensional self-consistent radiation transport model for the fluid simulation of plasma display panel cell," J. Appl. Phys. 93, 9516-9522 (2003).

2000 (2)

K. Suzuki, Y. Kawanami, S. Ho, N. Uemura, Y. Yajima, N. Kouchi, Y. Hatano, "Theoretical formulation of the vacuum ultraviolet production efficiency in a plasma display panel," J. Appl. Phys. 88, 5605-5611 (2000).

Y. Ikeda, K. Suzuki, H. Fukumoto, J. P. Verboncoeur, P. J. Christenson, C. K. Birdsall, M. Shibata, M. Ishigaki, "Two-dimensional particle simulation of a sustained discharge in an alternating current plasma display panel," J. Appl. Phys. 88, 6216-6223 (2000).

Comp. Phys. Commun. (1)

H. J. Lee, H. J. Yoon, J. K. Lee, "Simulation of photons from plasmas for the applications to display devices," Comp. Phys. Commun. 177, 106-107 (2007).

IEEE Tran. Plasma Sci. (1)

H. S. Bae, J. K. Kim, K.-W. Whang, "The effects of sustain electrode gap variation on the luminous efficacy in coplanar-type AC plasma display panel under low- and high-Xe content conditions," IEEE Tran. Plasma Sci. 35, 462-472 (2007).

IEEE Tran. Plasma Sci. (1)

I. C. Song, S. W. Hwang, D.-H. Kim, H.-J. Lee, C.-H. Park, H. J. Lee, "The effects of electrode structures on the luminous efficacy of micro dielectric barrier discharges," IEEE Tran. Plasma Sci. 37, 1572-1580 (2009).

J. Appl. Phys. (2)

G. Oversluizen, S. T. de Zwart, T. Dekker, "Plasma display panel design for simultaneous high efficacy and high luminance," J. Appl. Phys. 103, 013301 (2008).

K. Suzuki, Y. Kawanami, S. Ho, N. Uemura, Y. Yajima, N. Kouchi, Y. Hatano, "Theoretical formulation of the vacuum ultraviolet production efficiency in a plasma display panel," J. Appl. Phys. 88, 5605-5611 (2000).

J. Appl. Phys. (2)

Y. Ikeda, K. Suzuki, H. Fukumoto, J. P. Verboncoeur, P. J. Christenson, C. K. Birdsall, M. Shibata, M. Ishigaki, "Two-dimensional particle simulation of a sustained discharge in an alternating current plasma display panel," J. Appl. Phys. 88, 6216-6223 (2000).

H. C. Kim, S. S. Yang, J. K. Lee, "Three-dimensional self-consistent radiation transport model for the fluid simulation of plasma display panel cell," J. Appl. Phys. 93, 9516-9522 (2003).

J. Phys. D: Appl. Phys. (1)

J. P. Boeuf, "Plasma display panels: Physics, recent developments and key issues," J. Phys. D: Appl. Phys. 36, R53-R79 (2003).

J. Phys. D: Appl. Phys. (1)

T. Shiga, S. Mikoshiba, "Monte Carlo simulation of imprisonment of Xe resonant photons and luminous efficiency considerations of colour plasma displays," J. Phys. D: Appl. Phys. 37, 1221-1227 (2004).

Other (5)

S. Jung, S. Eom, M. Oh, J. Kang, "Optimization of geometries in PDP cells by optical simulation," Proc. ASID'06 (2006) pp. 373-375.

H. Park, Studies About Geometries in PDP Cells with a New UV Source M.S. Dept. Education Dankuk Univ.Yongin-siKorea (2007).

“Core Module User's Guide” LightTools (Ver. 7.3)Optical Research Associates (2010).

H. Doyeux, "Color plasma displays: Status of cell structure designs," SID'00 Tech. Dig. (2000) pp. 212-215.

L. F. Weber, "The promise of plasma displays for HDTV," SID'00 Tech. Dig. (2000) pp. 402-405.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.