Abstract

We present a review of light-emitting materials and devices that combine inorganic and organic lumophores and hosts. The essence of this hybrid inorganic/organic (I/O) approach is to combine materials, structures and devices from each category in such a way as to obtain best-of-both-worlds performance. The combination of high power/high efficiency inorganic light pump sources with high conversion efficiency organic lumophores is discussed in detail. In this type of Hybrid I/O device, near-ultraviolet (UV) or blue pump light is selectively converted to various visible colors based on the molecular structure of each lumophore. Since the lumophores are optically pumped their reliability is greatly increased compared to electrically pumped organic emitters. Methods for coupling the light from pumps to lumophores include direct path excitation (DPE) and light wave coupling (LWC). DPE uses one pump per lumophore pixel, which allows for active matrix style addressing, but requires large arrays of pumps. LWC uses either a single source or a small number of pump sources. To obtain pixelation for Hybrid I/O LWC devices we have developed a novel electrowetting switching method. Examples of Hybrid I/O displays and solid-state lighting are discussed.

© 2005 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription