Abstract

A flat microlens array whose focal length can be switched from positive to negative by electric field is demonstrated experimentally and confirmed by computer simulations. To generate the required gradient refractive index, an inhomogeneous electric field is created by a spherical indium-tin-oxide (ITO) electrode which is imbedded in the top flat substrate. The bottom substrate has a planar ITO electrode on its inner surface. A thin polymeric layer is overcoated on top of the spherical ITO to create a flat surface. The disclination lines are eliminated. Because of the employed dual-frequency liquid crystal,the microlens array has fast response times.

© 2005 IEEE

PDF Article

References

  • View by:
  • |

  1. Y. Fu and N. K. A. Bryan, "Design of hybrid micro-diffractive-refractive optical element with wide field of view for free space optical interconnections", Opt. Express , vol. 10, pp. 540-549, Jun. 2002.
  2. Y. Aoki, Y. Shimada and K. Iga, "Evaluation of numerical aperture and focusing characteristics of planar microlens for optical interconnects", Jpn. J. Appl. Phys., vol. 40, pp. L446-L448, May 2001.
  3. J. Duparré, B. Götz and R. Göring, "Micro-optical 1 square 4 fiber switch for multimode fibers with 600-µm core diameters", Appl. Opt., vol. 42, pp. 6889 -6896, Dec. 2003.
  4. P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day and L. G. Commander, "Switchable fiber coupling using variable-focal-length microlenses", Rev. Sci. Instrum., vol. 72, pp. 3132-3134, Jul. 2001 .
  5. S. Masuda, S. Takahashi, T. Nose, S. Sato and H. Ito, "Liquid-crystal microlens with a beam-steering function", Appl. Opt., vol. 36, pp. 4772-4778, Jul. 1997.
  6. J. Duparré, D. Radtke and P. Dannberg, "Implementation of field lens arrays in beam-deflecting microlens array telescopes", Appl. Opt., vol. 43, pp. 4854 -4861, Sep. 2004.
  7. B. Lee, S. Jung, S.-W. Min and J.-H. Park, "Three-dimensional display by use of integral photography with dynamically variable image planes", Opt. Lett., vol. 26, pp. 1481 -1482, Oct. 2001.
  8. S. Sato, "Liquid-crystal lens-cells with variable focal length", Jpn. J. Appl. Phys. , vol. 18, pp. 1679-1684, Sep. 1979.
  9. L. G. Commander, S. E. Day and D. R. Selviah, "Variable focal length microlenses", Opt. Commun., vol. 177, pp. 157-170, Apr. 2000.
  10. Y. Choi, J. H. Park, J. H. Kim and S. D. Lee, "Fabrication of a focal length variable microlens array based on a nematic liquid crystal", Opt. Mater., vol. 21, pp. 643-646, Jan. 2002.
  11. T. Nose and S. Sato, "A liquid crystal microlens obtained with a nonuniform electric field", Liq. Cryst., vol. 5, pp. 1425-1433, 1989.
  12. M. Ye and S. Sato, "Optical properties of liquid crystal lens of any size", Jpn. J. Appl. Phys., vol. 41, pp. L571-L573, May 2002.
  13. N. A. Riza and M. C. DeJule, "Three-terminal adaptive nematic liquid-crystal lens device", Opt. Lett., vol. 19, pp. 1013-1015, Jul. 1994.
  14. W. W. Chan and S. T. Kowel, "Imaging performance of the liquid-crystal-adaptive lens with conductive ladder meshing", Appl. Opt., vol. 36, pp. 8958-8969, Dec. 1997.
  15. B. Wang, M. Ye, M. Honma, T. Nose and S. Sato, "Liquid crystal lens with spherical electrode", Jpn. J. Appl. Phys., vol. 41, pp. L1232-L1233, Nov. 2002 .
  16. H. Ren, Y. H. Fan, S. Gauza and S. T. Wu, "Tunable-focus flat liquid crystal spherical lens", Appl. Phys. Lett., vol. 84, pp. 4789-4791, Jun. 2004.
  17. A. F. Naumov, M. Y. Loktev, I. R. Guralnik and G. Vdovin, "Liquid-crystal adaptive lenses with modal control", Opt. Lett., vol. 23, pp. 992-994, Jun. 1998.
  18. H. Ren, Y. H. Fan, S. Gauza and S. T. Wu, "Tunable microlens arrays using polymer network liquid crystal", Opt. Commun., vol. 230, pp. 267 -271, Feb. 2004.
  19. V. V. Presnyakov, K. E. Asatryan and T. V. Galstian, "Polymer-stabilized liquid crystal for tunable microlens applications", Opt. Express, vol. 10, pp. 865 -810, Aug. 2002.
  20. H. K. Bucher, R. T. Klingbiel and J. P. VanMeter, "Frequency-addressed liquid crystal field effect", Appl. Phys. Lett., vol. 25, pp. 186-188, Aug. 1974 .
  21. M. Schadt, "Low-frequency dielectric relaxations in nematics and dual-frequency addressing of field effects", Mol. Cryst. Liq. Cryst., vol. 89, pp. 77-92, 1982.
  22. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Oxford: U.K.: Clarendon, 1993, ch. 3.
  23. M. V. K. Chari and S. J. Salon, Numerical Methods in Electromagnetism , San Diego, CA: Academic, 2000.
  24. J. E. Anderson, C. Titus, P. Watson and P. J. Bos, "Significant speed and stability increases in multi-dimensional director simulations", Soc. Inf. Display Tech. Dig., vol. 31, pp. 906 -909, May 2000.
  25. M. Born and E. Wolf, Principle of Optics, Oxford: U.K.: Pergamon, 1993 .
  26. H. Ren, Y. H. Fan and S. T. Wu, "Liquid-crystal microlens arrays using patterned polymer networks", Opt. Lett., vol. 29, pp. 1608-1610, Jul. 2004.
  27. S. T. Wu, "Nematic liquid crystal modulator with response time less than 100 µs at room temperature", Appl. Phys. Lett., vol. 57, pp. 986-988, Sep. 1990 .

Appl. Opt.

Opt. Express

Opt. Lett.

Other

S. Sato, "Liquid-crystal lens-cells with variable focal length", Jpn. J. Appl. Phys. , vol. 18, pp. 1679-1684, Sep. 1979.

L. G. Commander, S. E. Day and D. R. Selviah, "Variable focal length microlenses", Opt. Commun., vol. 177, pp. 157-170, Apr. 2000.

Y. Choi, J. H. Park, J. H. Kim and S. D. Lee, "Fabrication of a focal length variable microlens array based on a nematic liquid crystal", Opt. Mater., vol. 21, pp. 643-646, Jan. 2002.

T. Nose and S. Sato, "A liquid crystal microlens obtained with a nonuniform electric field", Liq. Cryst., vol. 5, pp. 1425-1433, 1989.

M. Ye and S. Sato, "Optical properties of liquid crystal lens of any size", Jpn. J. Appl. Phys., vol. 41, pp. L571-L573, May 2002.

H. Ren, Y. H. Fan, S. Gauza and S. T. Wu, "Tunable microlens arrays using polymer network liquid crystal", Opt. Commun., vol. 230, pp. 267 -271, Feb. 2004.

B. Wang, M. Ye, M. Honma, T. Nose and S. Sato, "Liquid crystal lens with spherical electrode", Jpn. J. Appl. Phys., vol. 41, pp. L1232-L1233, Nov. 2002 .

H. Ren, Y. H. Fan, S. Gauza and S. T. Wu, "Tunable-focus flat liquid crystal spherical lens", Appl. Phys. Lett., vol. 84, pp. 4789-4791, Jun. 2004.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day and L. G. Commander, "Switchable fiber coupling using variable-focal-length microlenses", Rev. Sci. Instrum., vol. 72, pp. 3132-3134, Jul. 2001 .

Y. Fu and N. K. A. Bryan, "Design of hybrid micro-diffractive-refractive optical element with wide field of view for free space optical interconnections", Opt. Express , vol. 10, pp. 540-549, Jun. 2002.

Y. Aoki, Y. Shimada and K. Iga, "Evaluation of numerical aperture and focusing characteristics of planar microlens for optical interconnects", Jpn. J. Appl. Phys., vol. 40, pp. L446-L448, May 2001.

S. T. Wu, "Nematic liquid crystal modulator with response time less than 100 µs at room temperature", Appl. Phys. Lett., vol. 57, pp. 986-988, Sep. 1990 .

H. K. Bucher, R. T. Klingbiel and J. P. VanMeter, "Frequency-addressed liquid crystal field effect", Appl. Phys. Lett., vol. 25, pp. 186-188, Aug. 1974 .

M. Schadt, "Low-frequency dielectric relaxations in nematics and dual-frequency addressing of field effects", Mol. Cryst. Liq. Cryst., vol. 89, pp. 77-92, 1982.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Oxford: U.K.: Clarendon, 1993, ch. 3.

M. V. K. Chari and S. J. Salon, Numerical Methods in Electromagnetism , San Diego, CA: Academic, 2000.

J. E. Anderson, C. Titus, P. Watson and P. J. Bos, "Significant speed and stability increases in multi-dimensional director simulations", Soc. Inf. Display Tech. Dig., vol. 31, pp. 906 -909, May 2000.

M. Born and E. Wolf, Principle of Optics, Oxford: U.K.: Pergamon, 1993 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.