Abstract

Real-time high-throughput identification, screening, characterization, and processing of biological specimen is of great interest to a host of areas spanning from cell biology and medicine to security and defense. Much like human biometrics, microorganisms exhibit natural signatures that can be used for identification. In this paper, we first overview two optical techniques, namely digital holographic microscopy and holographic optical tweezers which can non-invasively image, manipulate, and identify microorganisms in three dimensions. The two methods bear similarities in their optics and implementation. Thus, we have proposed a new approach to identification of micro/nano organisms and cells by combining the two methods of digital holographic microscopy and holographic optical tweezers which can be integrated into a single compact hardware. The proposed system can simultaneously sense, control, identify, and track cells and microorganisms in three dimensions. New possibilities that arise from the proposed method are discussed.

© 2010 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription