Abstract

Despite rapid advances in science and technology of liquid crystal display (LCD); elimination of motion-related artifacts and preservation of color purity in moving images have remained elusive because gray-scale to gray-scale response time, i.e., time taken to switch pixels from one gray-scale to another depends on the initial and final gray shades. A technique wherein gray scale to gray scale response times are less dependent on the initial and final gray shades as compared to other addressing techniques for driving matrix LCD is reported. We also found that the response times are about the same as that of a pixel driven with simple square waveforms and, therefore, the effect of duty cycle due to matrix addressing is minimal with distributed waveforms of this technique.

© 2009 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription