Abstract

The coupled interaction between the reorientation of a liquid crystal and the migration of ionic impurities in the presence of an applied electric field is investigated for two device types commonly used in displays, the planar and the in-plane switching (IPS) cell. Simulated optical measurements and transient currents are compared to experimental results in order to discover means to alleviate the problems associated with ion migration. IPS cells have a lower electrode surface area than planar cells, and are therefore more sensitive to the movement of a given ion concentration. As a means to reduce this sensitivity, the effect of altering the electrode width and gap is studied.

© 2006 IEEE

PDF Article

References

  • View by:
  • |

  1. C. Colpaert, B. Maximus, H. Pauwels, "Study of transient currents in nematic liquid crystals," Proc. SID Res. Conf. (1993) pp. 301-304.
  2. A. Kilian, S. Hess, "Derivation and application of an algorithm for the numerical calculation of the local orientation of nematic liquid crystals," Z. Naturforsch 44a, 693-703 (1989).
  3. F. D. Pasquale, H. Deng, F. Fernández, S. Day, J. Davies, M. Johnson, A. van der Put, J. van de Eerenbeemd, J. van Haaren, J. Chapman, "Theoretical and experimental study of nematic liquid crystal display cells using the in-plane-switching mode," IEEE Trans. Electron Devices 46, 661-668 (1999).
  4. S. Vermael, K. Neyts, C. Desimpel, D. de Boer, S. Day, F. Fernández, P. Trwoga, F. Lanowith, "Two-dimensional Monte-Carlo-based ion transport algorithm in liquid crystals," Proc. 21st IDRC/the 8th IDW (2001).
  5. A. Sawada, K. Tarumi, S. Naemura, "Novel characterization method of ions in liquid crystal materials by complex dielectric constant measurements," Jpn. J. Appl. Phys. 38, 1423-1427 (1999).
  6. F. Fernández, H. Deng, S. Day, "Dynamic modeling of liquid crystal display cells using a constant charge approach," IEEE Trans. Magnetics 38, 1821-824 (2002).
  7. R. Jones, "A new calculus for the treatment of optical systems – I. Description and discussion of the calculus," J. Opt. Soc. Amer. 375, 488-493 (1941).
  8. G. Stojmenovik, Ion transport and boundary image retention in nematic liquid crystal displays Ph.D. Ghent UniversityGhentBelgium (2005).
  9. H. de Vleeschouwer, A. Verschueren, F. Bougrioa, K. Neyts, G. Stojmenovik, S. Vermael, H. Pauwels, "Dispersive ion generation in nematic liquid crystal displays," Jpn. J. Appl. Phys. 41, 1489-1494 (2002).
  10. H. Ren, Y. Lin, Y. Fan, S. Wu, "In-plane switching liquid crystal gel for polarization-independent light switch," J. Appl. Phys. 96, 3609-3611 (2004).
  11. S. Vermael, G. Stojmenovik, K. Neyts, D. de Boer, F. A. Fernández, "3-dimensional ion transport in liquid crystals," Jpn. J. Appl. Phys. 43, 4281-4285 (2004).
  12. F. A. Fernández, S. E. Day, P. Trwoga, H. Deng, R. James, "Three-dimensional dynamic modelling of liquid crystal display cells using finite elements," Mol. Cryst. Liq. Cryst. 375, 291-299 (2002).

IEEE Trans. Electron Devices (1)

F. D. Pasquale, H. Deng, F. Fernández, S. Day, J. Davies, M. Johnson, A. van der Put, J. van de Eerenbeemd, J. van Haaren, J. Chapman, "Theoretical and experimental study of nematic liquid crystal display cells using the in-plane-switching mode," IEEE Trans. Electron Devices 46, 661-668 (1999).

IEEE Trans. Magnetics (1)

F. Fernández, H. Deng, S. Day, "Dynamic modeling of liquid crystal display cells using a constant charge approach," IEEE Trans. Magnetics 38, 1821-824 (2002).

J. Opt. Soc. Amer. (1)

R. Jones, "A new calculus for the treatment of optical systems – I. Description and discussion of the calculus," J. Opt. Soc. Amer. 375, 488-493 (1941).

J. Appl. Phys. (1)

H. Ren, Y. Lin, Y. Fan, S. Wu, "In-plane switching liquid crystal gel for polarization-independent light switch," J. Appl. Phys. 96, 3609-3611 (2004).

Jpn. J. Appl. Phys. (2)

A. Sawada, K. Tarumi, S. Naemura, "Novel characterization method of ions in liquid crystal materials by complex dielectric constant measurements," Jpn. J. Appl. Phys. 38, 1423-1427 (1999).

H. de Vleeschouwer, A. Verschueren, F. Bougrioa, K. Neyts, G. Stojmenovik, S. Vermael, H. Pauwels, "Dispersive ion generation in nematic liquid crystal displays," Jpn. J. Appl. Phys. 41, 1489-1494 (2002).

Jpn. J. Appl. Phys. (1)

S. Vermael, G. Stojmenovik, K. Neyts, D. de Boer, F. A. Fernández, "3-dimensional ion transport in liquid crystals," Jpn. J. Appl. Phys. 43, 4281-4285 (2004).

Mol. Cryst. Liq. Cryst. (1)

F. A. Fernández, S. E. Day, P. Trwoga, H. Deng, R. James, "Three-dimensional dynamic modelling of liquid crystal display cells using finite elements," Mol. Cryst. Liq. Cryst. 375, 291-299 (2002).

Z. Naturforsch (1)

A. Kilian, S. Hess, "Derivation and application of an algorithm for the numerical calculation of the local orientation of nematic liquid crystals," Z. Naturforsch 44a, 693-703 (1989).

Other (3)

C. Colpaert, B. Maximus, H. Pauwels, "Study of transient currents in nematic liquid crystals," Proc. SID Res. Conf. (1993) pp. 301-304.

S. Vermael, K. Neyts, C. Desimpel, D. de Boer, S. Day, F. Fernández, P. Trwoga, F. Lanowith, "Two-dimensional Monte-Carlo-based ion transport algorithm in liquid crystals," Proc. 21st IDRC/the 8th IDW (2001).

G. Stojmenovik, Ion transport and boundary image retention in nematic liquid crystal displays Ph.D. Ghent UniversityGhentBelgium (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.