Abstract

In this paper, the electrical properties of oxide cathode and oxide cathode plus, supplied by LG Philips Displays, have been investigated in relation to different cathode activation regimes and methods. Oxide cathode activation treatment for different durations has been investigated. The formations of the compounds associated to the diffusion of reducing elements (Mg, Al, and W) to the Ni cap surface of oxide cathode were studied by a new suggestion method. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX) was used as analytical techniques.Al, W, and Mg doping elements take place during heating to 1080 K (Ni-Brightness) under a rich controlled Ba-SrO atmosphere through an acceleration life test. The chemical transport of these elements was occurred mainly by the Ni cap grain boundary mechanism with significant pile-up of Mg compounds. Al and W show a superficial concentrations and distribution.A new structural and resistivity network model of oxide cathode plus are suggested. The new structural model shows a number of metallic and metallic oxide pathways are exist at the interface or extended through the oxide coating. The effective values of the resistances and the type of the equivalent circuit in the resistivity network model are temperature and activation time dependent.

© 2006 IEEE

PDF Article

References

  • View by:
  • |

  1. A. A. Hashim, D. S. Barratt, A. K. Ray, A. K. Hassan, "The study of the effect of Ba coverage through the accelerations lifetime of activated BaO/SrO cathodes," App. Surf. Sci. 243, 421-428 (2005).
  2. A. N. H. Al-Ajili, S. N. B. Hodgson, A. P. Baker, A. K. Ray, J. R. Travis, C. J. Goodhand, "Enhancement of electrical conductivity and emission stability of oxide cathodes using Ni addition," J. Mater. Sci: Mater. Elect. 12, 99-105 (2001).
  3. S. N. B. Hodgson, A. P. Baker, C. J. Goodhand, P. A. M. van der Heide, T. Lee, A. K. Ray, A. N. H. Al-Ajili, "Processing and performance of a novel cathode material," Appl. Surf. Sci. 146, 79-83 (1999).
  4. A. A. Hashim, D. S. Barratt, A. K. Hassan, A. Nabok, "Electron conduction associated with the chemical transport of reducing elements in oxide cathode for CRT's application," Appl. Surf. Sci. in press.
  5. R. Loosjes, H. J. Vink, "The conduction mechanism in oxide-coating cathode," Philips Res. Rep. 4, 449 (1949).
  6. A. N. H. Al-Ajili, A. K. Ray, J. R. Travis, S. N. B. Hodgson, A. P. Baker, C. J. Goodhand, "Thermal decomposition and electrical conductivity of oxide cathode emission materials," J Mater. Sci.: Mate. Elect. 11, 489-495 (2000).
  7. A. A. Hashim, D. S. Barratt, A. K. Hassan, A. Nabok, "Accelerated life AC conductivity measurements of CRT oxide cathodes," Appl. Surf. Sci. in press.
  8. A. A. Akl, H. Kamal, K. Abdel-Hady, "Characterization of tungsten oxide films of different crystallinity prepared by RF sputtering," Phys. B: Condens. Matter 325, 65-75 (2003).
  9. M. Gillet, C. Lemire, E. Gillet, K. Aguir, "The role of surface oxygen vacancies upon WO3 conductivity," Surf. Sci. 532-535, 519-525 (2003).
  10. G. Dearnaley, "A theory of oxide-coated cathode," Thin Solid Films 3, 161 (1969).
  11. S.-I. Narita, "Relationship between thermionic emission and electrical conductivity of oxide-coated cathodes," J. Phys. Soc. 8, 331-338 (1953).
  12. H. Nakai, J. Shinohara, T. Sassa, Y. Ikegami, "Surface morphology and resistivity of aluminum oxide films prepared by plasma CVD combined with ion beam irradiation," Nucl. Instrum. Methods in Physics Res. B: Beam Interaction With Materials and Atoms 121, 125-128 (1997).
  13. T. N. Chin, R. W. Cohan, M. D. Coutts, "Electronic processes in oxide cathodes," RCA Rev. 35, 520-540 (1974).
  14. G. Gartner, P. Janiel, D. Raasch, "Direct determination of electrical conductivity of oxide cathodes," Appl. Surf. Sci. 201, 35-40 (2002).
  15. A. A. Hashim, D. S. Barratt, A. K. Ray, A. K. Hassan, "Formation of an interface layer in thermionic oxide cathodes for CRT applications," J. Phys. D: Appl. Phys. 37, 2932-2937 (2004).
  16. J. M. Shah, Y.-L. Li, T. Gessmann, E. F. Schubert, "Experimental analysis and theoretical model for anomalously high ideality factors (n>>2.0) in AlGaN/GaN p-n junction diodes," J. Appl. Phys. 94, 2627-2630 (2003).
  17. S. K. Mandal, A. B. Maity, J. Dutta, R. Pal, S. Chaudhuri, A. K. Pal, "Au/CdS schottky diode fabricated with nanocrystalline CdS layer," Phys. Stat. Sol. (a) 163, 433-443 (1997).
  18. F. Buda, J. Kohanof, M. Parrinello, "Optical properties of porous silicon: a first-principles study," Phys. Rev. Lett. 69, 1272-1275 (1992).
  19. J. M. Roquais, F. Poret, R. le Doze, P. Dufour, A. Steinbrunn, "Initial chemical transport of reducing elements and chemical reactions in oxide cathode base metal," Appl. Surf. Sci. 201, 85-95 (2002).
  20. S. N. Jenkins, D. K. Barber, M. J. Whiting, M. A. Baker, "Preliminary results on the chemical characterization of the cathode nickel emissive layer interface in oxide cathodes," Appl. Surf. Sci. 215, 78-86 (2003).
  21. A. A. Hashim, D. S. Barratt, A. K. Hassan, A. Nabok, "Activation process-dependent characteristics of novel thermionic oxide cathodes for CRT application," J. Display Technol. 2, 91-97 (2006).
  22. D. K. Barber, S. N. Jenkins, M. J. Whiting, M. A. Baker, "Analytical interfacial studies of double carbonate thermionic oxide cathodes over accelerated operational life," Appl. Surf. Sci. 251, 42-49 (2005).

App. Surf. Sci. (1)

A. A. Hashim, D. S. Barratt, A. K. Ray, A. K. Hassan, "The study of the effect of Ba coverage through the accelerations lifetime of activated BaO/SrO cathodes," App. Surf. Sci. 243, 421-428 (2005).

Appl. Surf. Sci. (1)

J. M. Roquais, F. Poret, R. le Doze, P. Dufour, A. Steinbrunn, "Initial chemical transport of reducing elements and chemical reactions in oxide cathode base metal," Appl. Surf. Sci. 201, 85-95 (2002).

Appl. Surf. Sci. (6)

S. N. Jenkins, D. K. Barber, M. J. Whiting, M. A. Baker, "Preliminary results on the chemical characterization of the cathode nickel emissive layer interface in oxide cathodes," Appl. Surf. Sci. 215, 78-86 (2003).

D. K. Barber, S. N. Jenkins, M. J. Whiting, M. A. Baker, "Analytical interfacial studies of double carbonate thermionic oxide cathodes over accelerated operational life," Appl. Surf. Sci. 251, 42-49 (2005).

S. N. B. Hodgson, A. P. Baker, C. J. Goodhand, P. A. M. van der Heide, T. Lee, A. K. Ray, A. N. H. Al-Ajili, "Processing and performance of a novel cathode material," Appl. Surf. Sci. 146, 79-83 (1999).

A. A. Hashim, D. S. Barratt, A. K. Hassan, A. Nabok, "Electron conduction associated with the chemical transport of reducing elements in oxide cathode for CRT's application," Appl. Surf. Sci. in press.

A. A. Hashim, D. S. Barratt, A. K. Hassan, A. Nabok, "Accelerated life AC conductivity measurements of CRT oxide cathodes," Appl. Surf. Sci. in press.

G. Gartner, P. Janiel, D. Raasch, "Direct determination of electrical conductivity of oxide cathodes," Appl. Surf. Sci. 201, 35-40 (2002).

J Mater. Sci.: Mate. Elect. (1)

A. N. H. Al-Ajili, A. K. Ray, J. R. Travis, S. N. B. Hodgson, A. P. Baker, C. J. Goodhand, "Thermal decomposition and electrical conductivity of oxide cathode emission materials," J Mater. Sci.: Mate. Elect. 11, 489-495 (2000).

J. Appl. Phys. (1)

J. M. Shah, Y.-L. Li, T. Gessmann, E. F. Schubert, "Experimental analysis and theoretical model for anomalously high ideality factors (n>>2.0) in AlGaN/GaN p-n junction diodes," J. Appl. Phys. 94, 2627-2630 (2003).

J. Phys. D: Appl. Phys. (1)

A. A. Hashim, D. S. Barratt, A. K. Ray, A. K. Hassan, "Formation of an interface layer in thermionic oxide cathodes for CRT applications," J. Phys. D: Appl. Phys. 37, 2932-2937 (2004).

J. Display Technol. (1)

J. Mater. Sci: Mater. Elect. (1)

A. N. H. Al-Ajili, S. N. B. Hodgson, A. P. Baker, A. K. Ray, J. R. Travis, C. J. Goodhand, "Enhancement of electrical conductivity and emission stability of oxide cathodes using Ni addition," J. Mater. Sci: Mater. Elect. 12, 99-105 (2001).

J. Phys. Soc. (1)

S.-I. Narita, "Relationship between thermionic emission and electrical conductivity of oxide-coated cathodes," J. Phys. Soc. 8, 331-338 (1953).

Nucl. Instrum. Methods in Physics Res. B: Beam Interaction With Materials and Atoms (1)

H. Nakai, J. Shinohara, T. Sassa, Y. Ikegami, "Surface morphology and resistivity of aluminum oxide films prepared by plasma CVD combined with ion beam irradiation," Nucl. Instrum. Methods in Physics Res. B: Beam Interaction With Materials and Atoms 121, 125-128 (1997).

Philips Res. Rep. (1)

R. Loosjes, H. J. Vink, "The conduction mechanism in oxide-coating cathode," Philips Res. Rep. 4, 449 (1949).

Phys. B: Condens. Matter (1)

A. A. Akl, H. Kamal, K. Abdel-Hady, "Characterization of tungsten oxide films of different crystallinity prepared by RF sputtering," Phys. B: Condens. Matter 325, 65-75 (2003).

Phys. Rev. Lett. (1)

F. Buda, J. Kohanof, M. Parrinello, "Optical properties of porous silicon: a first-principles study," Phys. Rev. Lett. 69, 1272-1275 (1992).

Phys. Stat. Sol. (a) (1)

S. K. Mandal, A. B. Maity, J. Dutta, R. Pal, S. Chaudhuri, A. K. Pal, "Au/CdS schottky diode fabricated with nanocrystalline CdS layer," Phys. Stat. Sol. (a) 163, 433-443 (1997).

RCA Rev. (1)

T. N. Chin, R. W. Cohan, M. D. Coutts, "Electronic processes in oxide cathodes," RCA Rev. 35, 520-540 (1974).

Surf. Sci. (1)

M. Gillet, C. Lemire, E. Gillet, K. Aguir, "The role of surface oxygen vacancies upon WO3 conductivity," Surf. Sci. 532-535, 519-525 (2003).

Thin Solid Films (1)

G. Dearnaley, "A theory of oxide-coated cathode," Thin Solid Films 3, 161 (1969).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.