Abstract

We demonstrate the simulation results of the radiation properties from top-emitting organic light-emitting devices (top-emitting OLEDs) with two- and three-microcavity structures based on the general electromagnetic theory. The parameters of the layer thickness and complex refractive index of each layer, the locations and density of the oscillating dipoles, and the emission photoluminescence spectrum are varied to optimize the device performance. In evaluating the deice performances, the output spectrum, the intensity distribution, and the viewing-angle characteristics of a top-emitting OLED are concerned. The simulation results are consistent with the Fabry-Pérot cavity equation, which can be used as a guideline for designing a two-cavity top-emitting OLED. In such a design process, the dipole position is chosen first. Then the thicknesses of the whole organic layer, the semi-transparent cathode, and the dielectric layer are adjusted for optimizing the device performance. In a three-cavity top-emitting OLED, not only the emission intensity and the viewing angle can be optimized at the same time, but also the emission wavelength can be independently tuned. Besides, the use of a three-cavity structure helps to narrow the spectral width and increase the color purity.

© 2006 IEEE

PDF Article

References

  • View by:
  • |

  1. C. W. Tang, S. A. Vanslyke, Appl. Phys. Lett. 51, 913 (1987).
  2. C. W. Tang, S. A. Vanslyke, C. H. Chen, J. Appl. Phys. 65, 3610 (1989).
  3. Z. Meng, M. Wong, IEEE Trans. Electron Devices 49, 991 (2002).
  4. Y. Kijima, N. Asai, N. Kishii, S. Tamura, IEEE Trans. Electron Devices 44, 1222 (1997).
  5. Y. Hong, J.-Y. Nahm, J. Kanicki, IEEE J. Sel. Topics Quantum Electron. 10, 16 (2004).
  6. T. N. Jackson, Y.-Y. Lin, D. J. Gundlach, H. Klauk, IEEE J. Sel. Topics Quantum Electron. 4, 100 (1998).
  7. C. J. Lee, R. B. Pode, D. G. Moon, J. I. Han, Thin Solid Films 467, 201 (2004).
  8. G. Gu, G. Parthasarathy, P. E. Burrows, P. Tian, I. G. Hill, A. Kahn, S. R. Forrest, J. Appl. Phys. 86, 4067 (1999).
  9. P. E. Burrows, G. Gu, S. R. Forrest, E. P. Vicenzi, T. X. Zhou, J. Appl. Phys. 87, 3080 (2000).
  10. H. Riel, S. Karg, T. Beierlein, W. Rieß, J. Appl. Phys. 94, 5290 (2003).
  11. C. C. Wu, P. Y. Hsieh, C. L. Lin, H. H. Chiang, Appl. Phys. Lett. 84, 3966 (2004).
  12. K. Neyts, P. De Visschere, D. K. Fork, G. B. Anderson, J. Opt. Soc. Amer. B 17, 114 (2000).
  13. C. C. Shiau, H. C. Chen, J. H. Lee, Y. W. Kiang, C. C. Yang, C. H. Chang, SPIE Proc. (2005) pp. 149.
  14. K. B. Kahen, Appl. Phys. Lett. 78, 1649 (2001).
  15. N. Takada, T. Tsutsui, S. Saito, Appl. Phys. Lett. 63, 2032-2034 (1993).
  16. S. K. So, W. K. Choi, L. M. Leung, K. Neyts, Appl. Phys. Lett. 74, 1939 (1999).
  17. B. W. DAndrade, M. E. Thompson, S. R. Forrest, Adv. Mater. 14, 147 (2002).
  18. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  19. P. A. Hobson, J. A. E. Wasey, I. Sage, W. L. Barnes, IEEE J. Sel. Topics Quantum Electron. 8, 378 (2002).
  20. E. F. Schubert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cho, G. J. Zydzik, Science 265, 943 (1994).
  21. S. Han, C. Huang, Z.-H. Lu, J. Appl. Phys. 97, (2005) 093 102.

Adv. Mater. (1)

B. W. DAndrade, M. E. Thompson, S. R. Forrest, Adv. Mater. 14, 147 (2002).

Appl. Phys. Lett. (2)

S. K. So, W. K. Choi, L. M. Leung, K. Neyts, Appl. Phys. Lett. 74, 1939 (1999).

C. C. Wu, P. Y. Hsieh, C. L. Lin, H. H. Chiang, Appl. Phys. Lett. 84, 3966 (2004).

Appl. Phys. Lett. (3)

K. B. Kahen, Appl. Phys. Lett. 78, 1649 (2001).

N. Takada, T. Tsutsui, S. Saito, Appl. Phys. Lett. 63, 2032-2034 (1993).

C. W. Tang, S. A. Vanslyke, Appl. Phys. Lett. 51, 913 (1987).

IEEE J. Sel. Topics Quantum Electron. (3)

Y. Hong, J.-Y. Nahm, J. Kanicki, IEEE J. Sel. Topics Quantum Electron. 10, 16 (2004).

T. N. Jackson, Y.-Y. Lin, D. J. Gundlach, H. Klauk, IEEE J. Sel. Topics Quantum Electron. 4, 100 (1998).

P. A. Hobson, J. A. E. Wasey, I. Sage, W. L. Barnes, IEEE J. Sel. Topics Quantum Electron. 8, 378 (2002).

IEEE Trans. Electron Devices (2)

Z. Meng, M. Wong, IEEE Trans. Electron Devices 49, 991 (2002).

Y. Kijima, N. Asai, N. Kishii, S. Tamura, IEEE Trans. Electron Devices 44, 1222 (1997).

J. Appl. Phys. (2)

P. E. Burrows, G. Gu, S. R. Forrest, E. P. Vicenzi, T. X. Zhou, J. Appl. Phys. 87, 3080 (2000).

S. Han, C. Huang, Z.-H. Lu, J. Appl. Phys. 97, (2005) 093 102.

J. Opt. Soc. Amer. B (1)

K. Neyts, P. De Visschere, D. K. Fork, G. B. Anderson, J. Opt. Soc. Amer. B 17, 114 (2000).

J. Appl. Phys. (3)

G. Gu, G. Parthasarathy, P. E. Burrows, P. Tian, I. G. Hill, A. Kahn, S. R. Forrest, J. Appl. Phys. 86, 4067 (1999).

H. Riel, S. Karg, T. Beierlein, W. Rieß, J. Appl. Phys. 94, 5290 (2003).

C. W. Tang, S. A. Vanslyke, C. H. Chen, J. Appl. Phys. 65, 3610 (1989).

Science (1)

E. F. Schubert, N. E. J. Hunt, M. Micovic, R. J. Malik, D. L. Sivco, A. Y. Cho, G. J. Zydzik, Science 265, 943 (1994).

Thin Solid Films (1)

C. J. Lee, R. B. Pode, D. G. Moon, J. I. Han, Thin Solid Films 467, 201 (2004).

Other (2)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

C. C. Shiau, H. C. Chen, J. H. Lee, Y. W. Kiang, C. C. Yang, C. H. Chang, SPIE Proc. (2005) pp. 149.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.