Abstract

This study assesses the impact of display refresh rate on the perception of dynamic visual stimuli in humans. A projection platform was developed in that context, allowing control of the frame rate on a trial-by-trial basis. Using this display, we introduce a series of psychophysical experiments aimed to quantitatively assess objective perceptual performance at different frame rates. Tasks that are often implicitly performed when watching movies on a television set, or when wearing a head mounted display, were chosen: speed discrimination, spatial discrimination, and reading abilities, with stimuli undergoing horizontal motion in a wide range of speeds ( $16-38\;\text{deg/s}$ ). The results show that whatever the stimuli or the task, performance is significantly better at high frame rate (HFR) compared to 60 Hz, providing clear-cut evidence that low refresh rates limit the ability to reliably analyze moving stimuli. These results extend those of previous psychophysical experiments performed at low refresh rates, further characterize genuine visual performance in humans and provide an objective benchmarking methodology allowing to assess visual performance with a variety of displays. Results indicate that for low resolution displays, where increasing spatial resolution is not an option, increasing frame rate could benefit motion perception. We discuss these results and their implications with regards to current and emerging categories of visual displays, such as head mounted displays.

© 2016 OAPP

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Armstrong, D. J. Flynn, M. E. Hammond, S. J. E. Jolly, and R. A. Salmon, “High frame-rate television,” SMPTE Motion Imaging J., vol. 118, no. 7, pp. 54–59, . 2009.
  2. T. Fujine, Y. Kikuchi, M. Sugino, and Y. Yoshida, “Real-life in-home viewing conditions for flat panel displays and statistical characteristics of broadcast video signal,” Japanese J. Appl. Phys., vol. 46, no. 3S, pp. 1358–1362, 2007. [Online]. Available: http://stacks.iop.org/1347-4065/46/i=3S/a=1358
  3. R. Yaoet al., Oculus VR Best Practices Guide. Menlo Park, CA, USA: Oculus VR, 2014.
  4. Y. Kuroki, T. Nishi, S. Kobayashi, H. Oyaizu, and S. Yoshimura, “A psychophysical study of improvements in motion-image quality by using high frame rates,” J. Soc. Inf. Display, vol. 15, no. 1, pp. 61–68, . 2007.
  5. Y. Kuroki, “Improvement of {3D} visual image quality by using high frame rate,” J. Soc. Inf. Display, vol. 20, no. 10, pp. 566–574, 2012. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/jsid.107/abstract
  6. D. M. Hoffman, V. I. Karasev, and M. S. Banks, “Temporal presentation protocols in stereoscopic displays: Flicker visibility, perceived motion, and perceived depth,” J. Soc. Inf. Display, vol. 19, no. 3, pp. 271–297, 2011. [Online]. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3092720&tool=pmcentrez&rendertype=abstract
  7. M. Emoto, Y. Kusakabe, and M. Sugawara, “High-frame-rate motion picture quality and its independence of viewing distance,” J. Display Technol., vol. 10, no. 8, pp. 635–641, . 2014.
  8. G. Deffner, “Eye movement recordings to study determinants of image quality in new display technology,” Stud. Vis. Inf. Process., vol. 6, pp. 479–490, 1995.
  9. M. Saikaet al., “Hyperspectral two-dimensional display with a diffractive grating and a digital mirror device,” in Proc. 9th Int. Conf. Opt.-Photon. Des Fabrication., 2014, pp. 13PSp–25.
  10. “Texas instrument DLP Lightcrafter,” [Online]. Available: www.ti.com/tool/dlplightcrafter, Accessed on: 23, 2016.
  11. J. B. Sampsell, “Digital micromirror device and its application to projection displays,” J. Vacuum Sci. Technol. B, Microelectron. Nanometer Struct., vol. 12, no. 6, pp. 3242–3246, 1994.
  12. S. P. McKee, “A local mechanism for differential velocity detection,” Vis. Res., vol. 21, no. 4, pp. 491–500, 1981.
  13. S. P. McKee, G. H. Silverman, and K. Nakayama, “Precise velocity discrimination despite random variations in temporal frequency and contrast,” Vis. Res., vol. 26, no. 4, pp. 609–619, 1986.
  14. G. A. Orban, J. de Wolf, and H. Maes, “Factors influencing velocity coding in the human visual system,” Vis. Res., vol. 24, no. 1, pp. 33–39, 1984.
  15. U. Ilg, Y. Jin, S. Schumann, and U. Schwarz, “Preparation and execution of saccades: The problem of limited capacity of computational resources,” Exp. Brain Res., vol. 171, no. 1, pp. 7–15, 2006. [Online]. Available: http://link.springer.com/article/10.1007/s00221-005-0255-z
  16. G. Westheimer, “Eye movement responses to a horizontally moving visual stimulus,” A.M.A. Archives Ophthalmol., vol. 52, no. 6, pp. 932–941, 1954. [Online]. Available: http://dx.doi.org/10.1001/archopht.1954.00920050938013
  17. E. Castet, J. Lorenceau, and C. Bonnet, “The inverse intensity effect is not lost with stimuli in apparent motion,” Vis. Res., vol. 33, no. 12, pp. 1697–1708, 1993.
  18. F. W. Campbell and J. Robson, “Application of fourier analysis to the visibility of gratings,” J. Physiol., vol. 197, no. 3, pp. 551–566, 1968.
  19. D. Kelly, “Motion and vision. ii. Stabilized spatio-temporal threshold surface,” Josa, vol. 69, no. 10, pp. 1340–1349, 1979.
  20. A. B. Watson, “High frame rates and human vision: A view through the window of visibility,” SMPTE Motion Imaging J., vol. 122, no. 2, pp. 18–32, . 2013.
  21. M. J. Berry, D. K. Warland, and M. Meister, “The structure and precision of retinal spike trains,” Proc. Nat. Acad. Sci. USA, vol. 94, no. 10, pp. 5411–5416, 1997.
  22. P. Reinagel and R. C. Reid, “Temporal coding of visual information in the thalamus,” J. Neurosci., vol. 20, no. 14, pp. 5392–5400, 2000.
  23. G. T. Buracas, A. M. Zador, M. R. DeWeese, and T. D. Albright, “Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex,” Neuron, vol. 20, no. 5, pp. 959–969, 1998.
  24. T. J. Blanche, K. Koepsell, N. Swindale, and B. A. Olshausen, “Predicting response variability in the primary visual cortex,” Proc. Comput. Syst. Neuroscience, COSYNE08, 2008.
  25. W. I. Al-Atabany, M. A. Memon, S. M. Downes, and P. A. Degenaar, “Designing and testing scene enhancement algorithms for patients with retina degenerative disorders,” Biomed. Eng. Online, vol. 9, p. 27, 2010.
  26. W. Al-Atabany and P. Degenaar, “Scene optimization for optogenetic retinal prosthesis,” in Proc. IEEE Biomed. Circuits Syst. Conf., 2011, pp. 432–435. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6107820
  27. L. Wanget al., “Photovoltaic retinal prosthesis: Implant fabrication and performance,” J. Neural Eng., vol. 9, no. 4, 2012, Art. no. .
  28. T. Pozzo, A. Berthoz, and L. Lefort, “Head kinematic during various motor tasks in humans,” Progress Brain Res., vol. 80, pp. 377–383, 1989.
  29. G. Grossman, R. Leigh, L. Abel, D. Lanska, and S. Thurston, “Frequency and velocity of rotational head perturbations during locomotion,” Exp. Brain Res., vol. 70, no. 3, pp. 470–476, 1988.
  30. K. Guttag, “TI DLP diamond pixel,” [Online]. Available: http://www.kguttag.com/2012/02/09/ti-dlp-diamond-pixel/, 2012, Accessed on: 23, 2016.

2014 (1)

2013 (1)

A. B. Watson, “High frame rates and human vision: A view through the window of visibility,” SMPTE Motion Imaging J., vol. 122, no. 2, pp. 18–32, . 2013.

2012 (2)

Y. Kuroki, “Improvement of {3D} visual image quality by using high frame rate,” J. Soc. Inf. Display, vol. 20, no. 10, pp. 566–574, 2012. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/jsid.107/abstract

L. Wanget al., “Photovoltaic retinal prosthesis: Implant fabrication and performance,” J. Neural Eng., vol. 9, no. 4, 2012, Art. no. .

2011 (1)

D. M. Hoffman, V. I. Karasev, and M. S. Banks, “Temporal presentation protocols in stereoscopic displays: Flicker visibility, perceived motion, and perceived depth,” J. Soc. Inf. Display, vol. 19, no. 3, pp. 271–297, 2011. [Online]. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3092720&tool=pmcentrez&rendertype=abstract

2010 (1)

W. I. Al-Atabany, M. A. Memon, S. M. Downes, and P. A. Degenaar, “Designing and testing scene enhancement algorithms for patients with retina degenerative disorders,” Biomed. Eng. Online, vol. 9, p. 27, 2010.

2009 (1)

M. G. Armstrong, D. J. Flynn, M. E. Hammond, S. J. E. Jolly, and R. A. Salmon, “High frame-rate television,” SMPTE Motion Imaging J., vol. 118, no. 7, pp. 54–59, . 2009.

2008 (1)

T. J. Blanche, K. Koepsell, N. Swindale, and B. A. Olshausen, “Predicting response variability in the primary visual cortex,” Proc. Comput. Syst. Neuroscience, COSYNE08, 2008.

2007 (2)

T. Fujine, Y. Kikuchi, M. Sugino, and Y. Yoshida, “Real-life in-home viewing conditions for flat panel displays and statistical characteristics of broadcast video signal,” Japanese J. Appl. Phys., vol. 46, no. 3S, pp. 1358–1362, 2007. [Online]. Available: http://stacks.iop.org/1347-4065/46/i=3S/a=1358

Y. Kuroki, T. Nishi, S. Kobayashi, H. Oyaizu, and S. Yoshimura, “A psychophysical study of improvements in motion-image quality by using high frame rates,” J. Soc. Inf. Display, vol. 15, no. 1, pp. 61–68, . 2007.

2006 (1)

U. Ilg, Y. Jin, S. Schumann, and U. Schwarz, “Preparation and execution of saccades: The problem of limited capacity of computational resources,” Exp. Brain Res., vol. 171, no. 1, pp. 7–15, 2006. [Online]. Available: http://link.springer.com/article/10.1007/s00221-005-0255-z

2000 (1)

P. Reinagel and R. C. Reid, “Temporal coding of visual information in the thalamus,” J. Neurosci., vol. 20, no. 14, pp. 5392–5400, 2000.

1998 (1)

G. T. Buracas, A. M. Zador, M. R. DeWeese, and T. D. Albright, “Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex,” Neuron, vol. 20, no. 5, pp. 959–969, 1998.

1995 (1)

G. Deffner, “Eye movement recordings to study determinants of image quality in new display technology,” Stud. Vis. Inf. Process., vol. 6, pp. 479–490, 1995.

1994 (1)

J. B. Sampsell, “Digital micromirror device and its application to projection displays,” J. Vacuum Sci. Technol. B, Microelectron. Nanometer Struct., vol. 12, no. 6, pp. 3242–3246, 1994.

1993 (1)

E. Castet, J. Lorenceau, and C. Bonnet, “The inverse intensity effect is not lost with stimuli in apparent motion,” Vis. Res., vol. 33, no. 12, pp. 1697–1708, 1993.

1989 (1)

T. Pozzo, A. Berthoz, and L. Lefort, “Head kinematic during various motor tasks in humans,” Progress Brain Res., vol. 80, pp. 377–383, 1989.

1988 (1)

G. Grossman, R. Leigh, L. Abel, D. Lanska, and S. Thurston, “Frequency and velocity of rotational head perturbations during locomotion,” Exp. Brain Res., vol. 70, no. 3, pp. 470–476, 1988.

1986 (1)

S. P. McKee, G. H. Silverman, and K. Nakayama, “Precise velocity discrimination despite random variations in temporal frequency and contrast,” Vis. Res., vol. 26, no. 4, pp. 609–619, 1986.

1984 (1)

G. A. Orban, J. de Wolf, and H. Maes, “Factors influencing velocity coding in the human visual system,” Vis. Res., vol. 24, no. 1, pp. 33–39, 1984.

1981 (1)

S. P. McKee, “A local mechanism for differential velocity detection,” Vis. Res., vol. 21, no. 4, pp. 491–500, 1981.

1979 (1)

D. Kelly, “Motion and vision. ii. Stabilized spatio-temporal threshold surface,” Josa, vol. 69, no. 10, pp. 1340–1349, 1979.

1968 (1)

F. W. Campbell and J. Robson, “Application of fourier analysis to the visibility of gratings,” J. Physiol., vol. 197, no. 3, pp. 551–566, 1968.

1954 (1)

G. Westheimer, “Eye movement responses to a horizontally moving visual stimulus,” A.M.A. Archives Ophthalmol., vol. 52, no. 6, pp. 932–941, 1954. [Online]. Available: http://dx.doi.org/10.1001/archopht.1954.00920050938013

Abel, L.

G. Grossman, R. Leigh, L. Abel, D. Lanska, and S. Thurston, “Frequency and velocity of rotational head perturbations during locomotion,” Exp. Brain Res., vol. 70, no. 3, pp. 470–476, 1988.

Al-Atabany, W.

W. Al-Atabany and P. Degenaar, “Scene optimization for optogenetic retinal prosthesis,” in Proc. IEEE Biomed. Circuits Syst. Conf., 2011, pp. 432–435. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6107820

Al-Atabany, W. I.

W. I. Al-Atabany, M. A. Memon, S. M. Downes, and P. A. Degenaar, “Designing and testing scene enhancement algorithms for patients with retina degenerative disorders,” Biomed. Eng. Online, vol. 9, p. 27, 2010.

Albright, T. D.

G. T. Buracas, A. M. Zador, M. R. DeWeese, and T. D. Albright, “Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex,” Neuron, vol. 20, no. 5, pp. 959–969, 1998.

Armstrong, M. G.

M. G. Armstrong, D. J. Flynn, M. E. Hammond, S. J. E. Jolly, and R. A. Salmon, “High frame-rate television,” SMPTE Motion Imaging J., vol. 118, no. 7, pp. 54–59, . 2009.

Banks, M. S.

D. M. Hoffman, V. I. Karasev, and M. S. Banks, “Temporal presentation protocols in stereoscopic displays: Flicker visibility, perceived motion, and perceived depth,” J. Soc. Inf. Display, vol. 19, no. 3, pp. 271–297, 2011. [Online]. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3092720&tool=pmcentrez&rendertype=abstract

Berry, M. J.

M. J. Berry, D. K. Warland, and M. Meister, “The structure and precision of retinal spike trains,” Proc. Nat. Acad. Sci. USA, vol. 94, no. 10, pp. 5411–5416, 1997.

Berthoz, A.

T. Pozzo, A. Berthoz, and L. Lefort, “Head kinematic during various motor tasks in humans,” Progress Brain Res., vol. 80, pp. 377–383, 1989.

Blanche, T. J.

T. J. Blanche, K. Koepsell, N. Swindale, and B. A. Olshausen, “Predicting response variability in the primary visual cortex,” Proc. Comput. Syst. Neuroscience, COSYNE08, 2008.

Bonnet, C.

E. Castet, J. Lorenceau, and C. Bonnet, “The inverse intensity effect is not lost with stimuli in apparent motion,” Vis. Res., vol. 33, no. 12, pp. 1697–1708, 1993.

Buracas, G. T.

G. T. Buracas, A. M. Zador, M. R. DeWeese, and T. D. Albright, “Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex,” Neuron, vol. 20, no. 5, pp. 959–969, 1998.

Campbell, F. W.

F. W. Campbell and J. Robson, “Application of fourier analysis to the visibility of gratings,” J. Physiol., vol. 197, no. 3, pp. 551–566, 1968.

Castet, E.

E. Castet, J. Lorenceau, and C. Bonnet, “The inverse intensity effect is not lost with stimuli in apparent motion,” Vis. Res., vol. 33, no. 12, pp. 1697–1708, 1993.

de Wolf, J.

G. A. Orban, J. de Wolf, and H. Maes, “Factors influencing velocity coding in the human visual system,” Vis. Res., vol. 24, no. 1, pp. 33–39, 1984.

Deffner, G.

G. Deffner, “Eye movement recordings to study determinants of image quality in new display technology,” Stud. Vis. Inf. Process., vol. 6, pp. 479–490, 1995.

Degenaar, P.

W. Al-Atabany and P. Degenaar, “Scene optimization for optogenetic retinal prosthesis,” in Proc. IEEE Biomed. Circuits Syst. Conf., 2011, pp. 432–435. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6107820

Degenaar, P. A.

W. I. Al-Atabany, M. A. Memon, S. M. Downes, and P. A. Degenaar, “Designing and testing scene enhancement algorithms for patients with retina degenerative disorders,” Biomed. Eng. Online, vol. 9, p. 27, 2010.

DeWeese, M. R.

G. T. Buracas, A. M. Zador, M. R. DeWeese, and T. D. Albright, “Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex,” Neuron, vol. 20, no. 5, pp. 959–969, 1998.

Downes, S. M.

W. I. Al-Atabany, M. A. Memon, S. M. Downes, and P. A. Degenaar, “Designing and testing scene enhancement algorithms for patients with retina degenerative disorders,” Biomed. Eng. Online, vol. 9, p. 27, 2010.

Emoto, M.

Flynn, D. J.

M. G. Armstrong, D. J. Flynn, M. E. Hammond, S. J. E. Jolly, and R. A. Salmon, “High frame-rate television,” SMPTE Motion Imaging J., vol. 118, no. 7, pp. 54–59, . 2009.

Fujine, T.

T. Fujine, Y. Kikuchi, M. Sugino, and Y. Yoshida, “Real-life in-home viewing conditions for flat panel displays and statistical characteristics of broadcast video signal,” Japanese J. Appl. Phys., vol. 46, no. 3S, pp. 1358–1362, 2007. [Online]. Available: http://stacks.iop.org/1347-4065/46/i=3S/a=1358

Grossman, G.

G. Grossman, R. Leigh, L. Abel, D. Lanska, and S. Thurston, “Frequency and velocity of rotational head perturbations during locomotion,” Exp. Brain Res., vol. 70, no. 3, pp. 470–476, 1988.

Guttag, K.

K. Guttag, “TI DLP diamond pixel,” [Online]. Available: http://www.kguttag.com/2012/02/09/ti-dlp-diamond-pixel/, 2012, Accessed on: 23, 2016.

Hammond, M. E.

M. G. Armstrong, D. J. Flynn, M. E. Hammond, S. J. E. Jolly, and R. A. Salmon, “High frame-rate television,” SMPTE Motion Imaging J., vol. 118, no. 7, pp. 54–59, . 2009.

Hoffman, D. M.

D. M. Hoffman, V. I. Karasev, and M. S. Banks, “Temporal presentation protocols in stereoscopic displays: Flicker visibility, perceived motion, and perceived depth,” J. Soc. Inf. Display, vol. 19, no. 3, pp. 271–297, 2011. [Online]. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3092720&tool=pmcentrez&rendertype=abstract

Ilg, U.

U. Ilg, Y. Jin, S. Schumann, and U. Schwarz, “Preparation and execution of saccades: The problem of limited capacity of computational resources,” Exp. Brain Res., vol. 171, no. 1, pp. 7–15, 2006. [Online]. Available: http://link.springer.com/article/10.1007/s00221-005-0255-z

Jin, Y.

U. Ilg, Y. Jin, S. Schumann, and U. Schwarz, “Preparation and execution of saccades: The problem of limited capacity of computational resources,” Exp. Brain Res., vol. 171, no. 1, pp. 7–15, 2006. [Online]. Available: http://link.springer.com/article/10.1007/s00221-005-0255-z

Jolly, S. J. E.

M. G. Armstrong, D. J. Flynn, M. E. Hammond, S. J. E. Jolly, and R. A. Salmon, “High frame-rate television,” SMPTE Motion Imaging J., vol. 118, no. 7, pp. 54–59, . 2009.

Karasev, V. I.

D. M. Hoffman, V. I. Karasev, and M. S. Banks, “Temporal presentation protocols in stereoscopic displays: Flicker visibility, perceived motion, and perceived depth,” J. Soc. Inf. Display, vol. 19, no. 3, pp. 271–297, 2011. [Online]. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3092720&tool=pmcentrez&rendertype=abstract

Kelly, D.

D. Kelly, “Motion and vision. ii. Stabilized spatio-temporal threshold surface,” Josa, vol. 69, no. 10, pp. 1340–1349, 1979.

Kikuchi, Y.

T. Fujine, Y. Kikuchi, M. Sugino, and Y. Yoshida, “Real-life in-home viewing conditions for flat panel displays and statistical characteristics of broadcast video signal,” Japanese J. Appl. Phys., vol. 46, no. 3S, pp. 1358–1362, 2007. [Online]. Available: http://stacks.iop.org/1347-4065/46/i=3S/a=1358

Kobayashi, S.

Y. Kuroki, T. Nishi, S. Kobayashi, H. Oyaizu, and S. Yoshimura, “A psychophysical study of improvements in motion-image quality by using high frame rates,” J. Soc. Inf. Display, vol. 15, no. 1, pp. 61–68, . 2007.

Koepsell, K.

T. J. Blanche, K. Koepsell, N. Swindale, and B. A. Olshausen, “Predicting response variability in the primary visual cortex,” Proc. Comput. Syst. Neuroscience, COSYNE08, 2008.

Kuroki, Y.

Y. Kuroki, “Improvement of {3D} visual image quality by using high frame rate,” J. Soc. Inf. Display, vol. 20, no. 10, pp. 566–574, 2012. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/jsid.107/abstract

Y. Kuroki, T. Nishi, S. Kobayashi, H. Oyaizu, and S. Yoshimura, “A psychophysical study of improvements in motion-image quality by using high frame rates,” J. Soc. Inf. Display, vol. 15, no. 1, pp. 61–68, . 2007.

Kusakabe, Y.

Lanska, D.

G. Grossman, R. Leigh, L. Abel, D. Lanska, and S. Thurston, “Frequency and velocity of rotational head perturbations during locomotion,” Exp. Brain Res., vol. 70, no. 3, pp. 470–476, 1988.

Lefort, L.

T. Pozzo, A. Berthoz, and L. Lefort, “Head kinematic during various motor tasks in humans,” Progress Brain Res., vol. 80, pp. 377–383, 1989.

Leigh, R.

G. Grossman, R. Leigh, L. Abel, D. Lanska, and S. Thurston, “Frequency and velocity of rotational head perturbations during locomotion,” Exp. Brain Res., vol. 70, no. 3, pp. 470–476, 1988.

Lorenceau, J.

E. Castet, J. Lorenceau, and C. Bonnet, “The inverse intensity effect is not lost with stimuli in apparent motion,” Vis. Res., vol. 33, no. 12, pp. 1697–1708, 1993.

Maes, H.

G. A. Orban, J. de Wolf, and H. Maes, “Factors influencing velocity coding in the human visual system,” Vis. Res., vol. 24, no. 1, pp. 33–39, 1984.

McKee, S. P.

S. P. McKee, G. H. Silverman, and K. Nakayama, “Precise velocity discrimination despite random variations in temporal frequency and contrast,” Vis. Res., vol. 26, no. 4, pp. 609–619, 1986.

S. P. McKee, “A local mechanism for differential velocity detection,” Vis. Res., vol. 21, no. 4, pp. 491–500, 1981.

Meister, M.

M. J. Berry, D. K. Warland, and M. Meister, “The structure and precision of retinal spike trains,” Proc. Nat. Acad. Sci. USA, vol. 94, no. 10, pp. 5411–5416, 1997.

Memon, M. A.

W. I. Al-Atabany, M. A. Memon, S. M. Downes, and P. A. Degenaar, “Designing and testing scene enhancement algorithms for patients with retina degenerative disorders,” Biomed. Eng. Online, vol. 9, p. 27, 2010.

Nakayama, K.

S. P. McKee, G. H. Silverman, and K. Nakayama, “Precise velocity discrimination despite random variations in temporal frequency and contrast,” Vis. Res., vol. 26, no. 4, pp. 609–619, 1986.

Nishi, T.

Y. Kuroki, T. Nishi, S. Kobayashi, H. Oyaizu, and S. Yoshimura, “A psychophysical study of improvements in motion-image quality by using high frame rates,” J. Soc. Inf. Display, vol. 15, no. 1, pp. 61–68, . 2007.

Olshausen, B. A.

T. J. Blanche, K. Koepsell, N. Swindale, and B. A. Olshausen, “Predicting response variability in the primary visual cortex,” Proc. Comput. Syst. Neuroscience, COSYNE08, 2008.

Orban, G. A.

G. A. Orban, J. de Wolf, and H. Maes, “Factors influencing velocity coding in the human visual system,” Vis. Res., vol. 24, no. 1, pp. 33–39, 1984.

Oyaizu, H.

Y. Kuroki, T. Nishi, S. Kobayashi, H. Oyaizu, and S. Yoshimura, “A psychophysical study of improvements in motion-image quality by using high frame rates,” J. Soc. Inf. Display, vol. 15, no. 1, pp. 61–68, . 2007.

Pozzo, T.

T. Pozzo, A. Berthoz, and L. Lefort, “Head kinematic during various motor tasks in humans,” Progress Brain Res., vol. 80, pp. 377–383, 1989.

Reid, R. C.

P. Reinagel and R. C. Reid, “Temporal coding of visual information in the thalamus,” J. Neurosci., vol. 20, no. 14, pp. 5392–5400, 2000.

Reinagel, P.

P. Reinagel and R. C. Reid, “Temporal coding of visual information in the thalamus,” J. Neurosci., vol. 20, no. 14, pp. 5392–5400, 2000.

Robson, J.

F. W. Campbell and J. Robson, “Application of fourier analysis to the visibility of gratings,” J. Physiol., vol. 197, no. 3, pp. 551–566, 1968.

Saika, M.

M. Saikaet al., “Hyperspectral two-dimensional display with a diffractive grating and a digital mirror device,” in Proc. 9th Int. Conf. Opt.-Photon. Des Fabrication., 2014, pp. 13PSp–25.

Salmon, R. A.

M. G. Armstrong, D. J. Flynn, M. E. Hammond, S. J. E. Jolly, and R. A. Salmon, “High frame-rate television,” SMPTE Motion Imaging J., vol. 118, no. 7, pp. 54–59, . 2009.

Sampsell, J. B.

J. B. Sampsell, “Digital micromirror device and its application to projection displays,” J. Vacuum Sci. Technol. B, Microelectron. Nanometer Struct., vol. 12, no. 6, pp. 3242–3246, 1994.

Schumann, S.

U. Ilg, Y. Jin, S. Schumann, and U. Schwarz, “Preparation and execution of saccades: The problem of limited capacity of computational resources,” Exp. Brain Res., vol. 171, no. 1, pp. 7–15, 2006. [Online]. Available: http://link.springer.com/article/10.1007/s00221-005-0255-z

Schwarz, U.

U. Ilg, Y. Jin, S. Schumann, and U. Schwarz, “Preparation and execution of saccades: The problem of limited capacity of computational resources,” Exp. Brain Res., vol. 171, no. 1, pp. 7–15, 2006. [Online]. Available: http://link.springer.com/article/10.1007/s00221-005-0255-z

Silverman, G. H.

S. P. McKee, G. H. Silverman, and K. Nakayama, “Precise velocity discrimination despite random variations in temporal frequency and contrast,” Vis. Res., vol. 26, no. 4, pp. 609–619, 1986.

Sugawara, M.

Sugino, M.

T. Fujine, Y. Kikuchi, M. Sugino, and Y. Yoshida, “Real-life in-home viewing conditions for flat panel displays and statistical characteristics of broadcast video signal,” Japanese J. Appl. Phys., vol. 46, no. 3S, pp. 1358–1362, 2007. [Online]. Available: http://stacks.iop.org/1347-4065/46/i=3S/a=1358

Swindale, N.

T. J. Blanche, K. Koepsell, N. Swindale, and B. A. Olshausen, “Predicting response variability in the primary visual cortex,” Proc. Comput. Syst. Neuroscience, COSYNE08, 2008.

Thurston, S.

G. Grossman, R. Leigh, L. Abel, D. Lanska, and S. Thurston, “Frequency and velocity of rotational head perturbations during locomotion,” Exp. Brain Res., vol. 70, no. 3, pp. 470–476, 1988.

Wang, L.

L. Wanget al., “Photovoltaic retinal prosthesis: Implant fabrication and performance,” J. Neural Eng., vol. 9, no. 4, 2012, Art. no. .

Warland, D. K.

M. J. Berry, D. K. Warland, and M. Meister, “The structure and precision of retinal spike trains,” Proc. Nat. Acad. Sci. USA, vol. 94, no. 10, pp. 5411–5416, 1997.

Watson, A. B.

A. B. Watson, “High frame rates and human vision: A view through the window of visibility,” SMPTE Motion Imaging J., vol. 122, no. 2, pp. 18–32, . 2013.

Westheimer, G.

G. Westheimer, “Eye movement responses to a horizontally moving visual stimulus,” A.M.A. Archives Ophthalmol., vol. 52, no. 6, pp. 932–941, 1954. [Online]. Available: http://dx.doi.org/10.1001/archopht.1954.00920050938013

Yao, R.

R. Yaoet al., Oculus VR Best Practices Guide. Menlo Park, CA, USA: Oculus VR, 2014.

Yoshida, Y.

T. Fujine, Y. Kikuchi, M. Sugino, and Y. Yoshida, “Real-life in-home viewing conditions for flat panel displays and statistical characteristics of broadcast video signal,” Japanese J. Appl. Phys., vol. 46, no. 3S, pp. 1358–1362, 2007. [Online]. Available: http://stacks.iop.org/1347-4065/46/i=3S/a=1358

Yoshimura, S.

Y. Kuroki, T. Nishi, S. Kobayashi, H. Oyaizu, and S. Yoshimura, “A psychophysical study of improvements in motion-image quality by using high frame rates,” J. Soc. Inf. Display, vol. 15, no. 1, pp. 61–68, . 2007.

Zador, A. M.

G. T. Buracas, A. M. Zador, M. R. DeWeese, and T. D. Albright, “Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex,” Neuron, vol. 20, no. 5, pp. 959–969, 1998.

A.M.A. Archives Ophthalmol. (1)

G. Westheimer, “Eye movement responses to a horizontally moving visual stimulus,” A.M.A. Archives Ophthalmol., vol. 52, no. 6, pp. 932–941, 1954. [Online]. Available: http://dx.doi.org/10.1001/archopht.1954.00920050938013

Biomed. Eng. Online (1)

W. I. Al-Atabany, M. A. Memon, S. M. Downes, and P. A. Degenaar, “Designing and testing scene enhancement algorithms for patients with retina degenerative disorders,” Biomed. Eng. Online, vol. 9, p. 27, 2010.

Exp. Brain Res. (2)

G. Grossman, R. Leigh, L. Abel, D. Lanska, and S. Thurston, “Frequency and velocity of rotational head perturbations during locomotion,” Exp. Brain Res., vol. 70, no. 3, pp. 470–476, 1988.

U. Ilg, Y. Jin, S. Schumann, and U. Schwarz, “Preparation and execution of saccades: The problem of limited capacity of computational resources,” Exp. Brain Res., vol. 171, no. 1, pp. 7–15, 2006. [Online]. Available: http://link.springer.com/article/10.1007/s00221-005-0255-z

J. Display Technol. (1)

J. Neural Eng. (1)

L. Wanget al., “Photovoltaic retinal prosthesis: Implant fabrication and performance,” J. Neural Eng., vol. 9, no. 4, 2012, Art. no. .

J. Neurosci. (1)

P. Reinagel and R. C. Reid, “Temporal coding of visual information in the thalamus,” J. Neurosci., vol. 20, no. 14, pp. 5392–5400, 2000.

J. Physiol. (1)

F. W. Campbell and J. Robson, “Application of fourier analysis to the visibility of gratings,” J. Physiol., vol. 197, no. 3, pp. 551–566, 1968.

J. Soc. Inf. Display (3)

Y. Kuroki, T. Nishi, S. Kobayashi, H. Oyaizu, and S. Yoshimura, “A psychophysical study of improvements in motion-image quality by using high frame rates,” J. Soc. Inf. Display, vol. 15, no. 1, pp. 61–68, . 2007.

Y. Kuroki, “Improvement of {3D} visual image quality by using high frame rate,” J. Soc. Inf. Display, vol. 20, no. 10, pp. 566–574, 2012. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/jsid.107/abstract

D. M. Hoffman, V. I. Karasev, and M. S. Banks, “Temporal presentation protocols in stereoscopic displays: Flicker visibility, perceived motion, and perceived depth,” J. Soc. Inf. Display, vol. 19, no. 3, pp. 271–297, 2011. [Online]. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3092720&tool=pmcentrez&rendertype=abstract

J. Vacuum Sci. Technol. B, Microelectron. Nanometer Struct. (1)

J. B. Sampsell, “Digital micromirror device and its application to projection displays,” J. Vacuum Sci. Technol. B, Microelectron. Nanometer Struct., vol. 12, no. 6, pp. 3242–3246, 1994.

Japanese J. Appl. Phys. (1)

T. Fujine, Y. Kikuchi, M. Sugino, and Y. Yoshida, “Real-life in-home viewing conditions for flat panel displays and statistical characteristics of broadcast video signal,” Japanese J. Appl. Phys., vol. 46, no. 3S, pp. 1358–1362, 2007. [Online]. Available: http://stacks.iop.org/1347-4065/46/i=3S/a=1358

Josa (1)

D. Kelly, “Motion and vision. ii. Stabilized spatio-temporal threshold surface,” Josa, vol. 69, no. 10, pp. 1340–1349, 1979.

Neuron (1)

G. T. Buracas, A. M. Zador, M. R. DeWeese, and T. D. Albright, “Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex,” Neuron, vol. 20, no. 5, pp. 959–969, 1998.

Proc. Comput. Syst. Neuroscience, COSYNE08 (1)

T. J. Blanche, K. Koepsell, N. Swindale, and B. A. Olshausen, “Predicting response variability in the primary visual cortex,” Proc. Comput. Syst. Neuroscience, COSYNE08, 2008.

Progress Brain Res. (1)

T. Pozzo, A. Berthoz, and L. Lefort, “Head kinematic during various motor tasks in humans,” Progress Brain Res., vol. 80, pp. 377–383, 1989.

SMPTE Motion Imaging J. (2)

A. B. Watson, “High frame rates and human vision: A view through the window of visibility,” SMPTE Motion Imaging J., vol. 122, no. 2, pp. 18–32, . 2013.

M. G. Armstrong, D. J. Flynn, M. E. Hammond, S. J. E. Jolly, and R. A. Salmon, “High frame-rate television,” SMPTE Motion Imaging J., vol. 118, no. 7, pp. 54–59, . 2009.

Stud. Vis. Inf. Process. (1)

G. Deffner, “Eye movement recordings to study determinants of image quality in new display technology,” Stud. Vis. Inf. Process., vol. 6, pp. 479–490, 1995.

Vis. Res. (4)

S. P. McKee, “A local mechanism for differential velocity detection,” Vis. Res., vol. 21, no. 4, pp. 491–500, 1981.

S. P. McKee, G. H. Silverman, and K. Nakayama, “Precise velocity discrimination despite random variations in temporal frequency and contrast,” Vis. Res., vol. 26, no. 4, pp. 609–619, 1986.

G. A. Orban, J. de Wolf, and H. Maes, “Factors influencing velocity coding in the human visual system,” Vis. Res., vol. 24, no. 1, pp. 33–39, 1984.

E. Castet, J. Lorenceau, and C. Bonnet, “The inverse intensity effect is not lost with stimuli in apparent motion,” Vis. Res., vol. 33, no. 12, pp. 1697–1708, 1993.

Other (6)

W. Al-Atabany and P. Degenaar, “Scene optimization for optogenetic retinal prosthesis,” in Proc. IEEE Biomed. Circuits Syst. Conf., 2011, pp. 432–435. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6107820

K. Guttag, “TI DLP diamond pixel,” [Online]. Available: http://www.kguttag.com/2012/02/09/ti-dlp-diamond-pixel/, 2012, Accessed on: 23, 2016.

M. Saikaet al., “Hyperspectral two-dimensional display with a diffractive grating and a digital mirror device,” in Proc. 9th Int. Conf. Opt.-Photon. Des Fabrication., 2014, pp. 13PSp–25.

“Texas instrument DLP Lightcrafter,” [Online]. Available: www.ti.com/tool/dlplightcrafter, Accessed on: 23, 2016.

R. Yaoet al., Oculus VR Best Practices Guide. Menlo Park, CA, USA: Oculus VR, 2014.

M. J. Berry, D. K. Warland, and M. Meister, “The structure and precision of retinal spike trains,” Proc. Nat. Acad. Sci. USA, vol. 94, no. 10, pp. 5411–5416, 1997.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.