Abstract
© 2016 OAPP
PDF Article© 2016 OAPP
PDF Article
A. B. Watson, “High frame rates and human
vision: A view through the window of visibility,” SMPTE Motion
Imaging J., vol. 122, no. 2, pp. 18–32, . 2013.
Y. Kuroki, “Improvement of {3D} visual
image quality by using high frame rate,” J. Soc. Inf. Display,
vol. 20, no. 10, pp. 566–574, 2012. [Online]. Available:
http://onlinelibrary.wiley.com/doi/10.1002/jsid.107/abstract
L. Wanget al., “Photovoltaic retinal
prosthesis: Implant fabrication and performance,” J. Neural Eng.,
vol. 9, no. 4, 2012, Art. no. .
D. M. Hoffman, V. I. Karasev, and M. S.
Banks, “Temporal presentation protocols in stereoscopic displays:
Flicker visibility, perceived motion, and perceived depth,” J.
Soc. Inf. Display, vol. 19, no. 3, pp. 271–297, 2011. [Online].
Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3092720&tool=pmcentrez&rendertype=abstract
W. I. Al-Atabany, M. A. Memon, S. M.
Downes, and P. A. Degenaar, “Designing and testing scene
enhancement algorithms for patients with retina degenerative
disorders,” Biomed. Eng. Online, vol. 9, p. 27,
2010.
M. G. Armstrong, D. J. Flynn, M. E.
Hammond, S. J. E. Jolly, and R. A. Salmon, “High frame-rate
television,” SMPTE Motion Imaging J., vol. 118, no. 7, pp. 54–59,
. 2009.
T. J. Blanche, K. Koepsell, N. Swindale,
and B. A. Olshausen, “Predicting response variability in the
primary visual cortex,” Proc. Comput. Syst. Neuroscience,
COSYNE08, 2008.
T. Fujine, Y. Kikuchi, M. Sugino, and Y.
Yoshida, “Real-life in-home viewing conditions for flat panel
displays and statistical characteristics of broadcast video
signal,” Japanese J. Appl. Phys., vol. 46, no. 3S, pp. 1358–1362,
2007. [Online]. Available:
http://stacks.iop.org/1347-4065/46/i=3S/a=1358
Y. Kuroki, T. Nishi, S. Kobayashi, H.
Oyaizu, and S. Yoshimura, “A psychophysical study of improvements
in motion-image quality by using high frame rates,” J. Soc. Inf.
Display, vol. 15, no. 1, pp. 61–68, . 2007.
U. Ilg, Y. Jin, S. Schumann, and U.
Schwarz, “Preparation and execution of saccades: The problem of
limited capacity of computational resources,” Exp. Brain Res.,
vol. 171, no. 1, pp. 7–15, 2006. [Online]. Available:
http://link.springer.com/article/10.1007/s00221-005-0255-z
P. Reinagel and R. C. Reid, “Temporal
coding of visual information in the thalamus,” J. Neurosci., vol.
20, no. 14, pp. 5392–5400, 2000.
G. T. Buracas, A. M. Zador, M. R.
DeWeese, and T. D. Albright, “Efficient discrimination of temporal
patterns by motion-sensitive neurons in primate visual cortex,”
Neuron, vol. 20, no. 5, pp. 959–969, 1998.
G. Deffner, “Eye movement recordings to
study determinants of image quality in new display technology,”
Stud. Vis. Inf. Process., vol. 6, pp. 479–490,
1995.
J. B. Sampsell, “Digital micromirror
device and its application to projection displays,” J. Vacuum Sci.
Technol. B, Microelectron. Nanometer Struct., vol. 12, no. 6, pp.
3242–3246, 1994.
E. Castet, J. Lorenceau, and C. Bonnet,
“The inverse intensity effect is not lost with stimuli in apparent
motion,” Vis. Res., vol. 33, no. 12, pp. 1697–1708,
1993.
T. Pozzo, A. Berthoz, and L. Lefort,
“Head kinematic during various motor tasks in humans,” Progress
Brain Res., vol. 80, pp. 377–383, 1989.
G. Grossman, R. Leigh, L. Abel, D.
Lanska, and S. Thurston, “Frequency and velocity of rotational
head perturbations during locomotion,” Exp. Brain Res., vol. 70,
no. 3, pp. 470–476, 1988.
S. P. McKee, G. H. Silverman, and K.
Nakayama, “Precise velocity discrimination despite random
variations in temporal frequency and contrast,” Vis. Res., vol.
26, no. 4, pp. 609–619, 1986.
G. A. Orban, J. de Wolf, and H. Maes,
“Factors influencing velocity coding in the human visual system,”
Vis. Res., vol. 24, no. 1, pp. 33–39, 1984.
S. P. McKee, “A local mechanism for
differential velocity detection,” Vis. Res., vol. 21, no. 4, pp.
491–500, 1981.
D. Kelly, “Motion and vision. ii.
Stabilized spatio-temporal threshold surface,” Josa, vol. 69, no.
10, pp. 1340–1349, 1979.
F. W. Campbell and J. Robson,
“Application of fourier analysis to the visibility of gratings,”
J. Physiol., vol. 197, no. 3, pp. 551–566, 1968.
G. Westheimer, “Eye movement responses to
a horizontally moving visual stimulus,” A.M.A. Archives
Ophthalmol., vol. 52, no. 6, pp. 932–941, 1954. [Online].
Available:
http://dx.doi.org/10.1001/archopht.1954.00920050938013
G. Grossman, R. Leigh, L. Abel, D.
Lanska, and S. Thurston, “Frequency and velocity of rotational
head perturbations during locomotion,” Exp. Brain Res., vol. 70,
no. 3, pp. 470–476, 1988.
W. Al-Atabany and P. Degenaar, “Scene
optimization for optogenetic retinal prosthesis,” in Proc. IEEE
Biomed. Circuits Syst. Conf., 2011, pp. 432–435. [Online].
Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6107820
W. I. Al-Atabany, M. A. Memon, S. M.
Downes, and P. A. Degenaar, “Designing and testing scene
enhancement algorithms for patients with retina degenerative
disorders,” Biomed. Eng. Online, vol. 9, p. 27,
2010.
G. T. Buracas, A. M. Zador, M. R.
DeWeese, and T. D. Albright, “Efficient discrimination of temporal
patterns by motion-sensitive neurons in primate visual cortex,”
Neuron, vol. 20, no. 5, pp. 959–969, 1998.
M. G. Armstrong, D. J. Flynn, M. E.
Hammond, S. J. E. Jolly, and R. A. Salmon, “High frame-rate
television,” SMPTE Motion Imaging J., vol. 118, no. 7, pp. 54–59,
. 2009.
D. M. Hoffman, V. I. Karasev, and M. S.
Banks, “Temporal presentation protocols in stereoscopic displays:
Flicker visibility, perceived motion, and perceived depth,” J.
Soc. Inf. Display, vol. 19, no. 3, pp. 271–297, 2011. [Online].
Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3092720&tool=pmcentrez&rendertype=abstract
M. J. Berry, D. K. Warland, and M.
Meister, “The structure and precision of retinal spike trains,”
Proc. Nat. Acad. Sci. USA, vol. 94, no. 10, pp. 5411–5416,
1997.
T. Pozzo, A. Berthoz, and L. Lefort,
“Head kinematic during various motor tasks in humans,” Progress
Brain Res., vol. 80, pp. 377–383, 1989.
T. J. Blanche, K. Koepsell, N. Swindale,
and B. A. Olshausen, “Predicting response variability in the
primary visual cortex,” Proc. Comput. Syst. Neuroscience,
COSYNE08, 2008.
E. Castet, J. Lorenceau, and C. Bonnet,
“The inverse intensity effect is not lost with stimuli in apparent
motion,” Vis. Res., vol. 33, no. 12, pp. 1697–1708,
1993.
G. T. Buracas, A. M. Zador, M. R.
DeWeese, and T. D. Albright, “Efficient discrimination of temporal
patterns by motion-sensitive neurons in primate visual cortex,”
Neuron, vol. 20, no. 5, pp. 959–969, 1998.
F. W. Campbell and J. Robson,
“Application of fourier analysis to the visibility of gratings,”
J. Physiol., vol. 197, no. 3, pp. 551–566, 1968.
E. Castet, J. Lorenceau, and C. Bonnet,
“The inverse intensity effect is not lost with stimuli in apparent
motion,” Vis. Res., vol. 33, no. 12, pp. 1697–1708,
1993.
G. A. Orban, J. de Wolf, and H. Maes,
“Factors influencing velocity coding in the human visual system,”
Vis. Res., vol. 24, no. 1, pp. 33–39, 1984.
G. Deffner, “Eye movement recordings to
study determinants of image quality in new display technology,”
Stud. Vis. Inf. Process., vol. 6, pp. 479–490,
1995.
W. Al-Atabany and P. Degenaar, “Scene
optimization for optogenetic retinal prosthesis,” in Proc. IEEE
Biomed. Circuits Syst. Conf., 2011, pp. 432–435. [Online].
Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6107820
W. I. Al-Atabany, M. A. Memon, S. M.
Downes, and P. A. Degenaar, “Designing and testing scene
enhancement algorithms for patients with retina degenerative
disorders,” Biomed. Eng. Online, vol. 9, p. 27,
2010.
G. T. Buracas, A. M. Zador, M. R.
DeWeese, and T. D. Albright, “Efficient discrimination of temporal
patterns by motion-sensitive neurons in primate visual cortex,”
Neuron, vol. 20, no. 5, pp. 959–969, 1998.
W. I. Al-Atabany, M. A. Memon, S. M.
Downes, and P. A. Degenaar, “Designing and testing scene
enhancement algorithms for patients with retina degenerative
disorders,” Biomed. Eng. Online, vol. 9, p. 27,
2010.
M. G. Armstrong, D. J. Flynn, M. E.
Hammond, S. J. E. Jolly, and R. A. Salmon, “High frame-rate
television,” SMPTE Motion Imaging J., vol. 118, no. 7, pp. 54–59,
. 2009.
T. Fujine, Y. Kikuchi, M. Sugino, and Y.
Yoshida, “Real-life in-home viewing conditions for flat panel
displays and statistical characteristics of broadcast video
signal,” Japanese J. Appl. Phys., vol. 46, no. 3S, pp. 1358–1362,
2007. [Online]. Available:
http://stacks.iop.org/1347-4065/46/i=3S/a=1358
G. Grossman, R. Leigh, L. Abel, D.
Lanska, and S. Thurston, “Frequency and velocity of rotational
head perturbations during locomotion,” Exp. Brain Res., vol. 70,
no. 3, pp. 470–476, 1988.
K. Guttag, “TI DLP diamond pixel,”
[Online]. Available:
http://www.kguttag.com/2012/02/09/ti-dlp-diamond-pixel/, 2012,
Accessed on: 23, 2016.
M. G. Armstrong, D. J. Flynn, M. E.
Hammond, S. J. E. Jolly, and R. A. Salmon, “High frame-rate
television,” SMPTE Motion Imaging J., vol. 118, no. 7, pp. 54–59,
. 2009.
D. M. Hoffman, V. I. Karasev, and M. S.
Banks, “Temporal presentation protocols in stereoscopic displays:
Flicker visibility, perceived motion, and perceived depth,” J.
Soc. Inf. Display, vol. 19, no. 3, pp. 271–297, 2011. [Online].
Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3092720&tool=pmcentrez&rendertype=abstract
U. Ilg, Y. Jin, S. Schumann, and U.
Schwarz, “Preparation and execution of saccades: The problem of
limited capacity of computational resources,” Exp. Brain Res.,
vol. 171, no. 1, pp. 7–15, 2006. [Online]. Available:
http://link.springer.com/article/10.1007/s00221-005-0255-z
U. Ilg, Y. Jin, S. Schumann, and U.
Schwarz, “Preparation and execution of saccades: The problem of
limited capacity of computational resources,” Exp. Brain Res.,
vol. 171, no. 1, pp. 7–15, 2006. [Online]. Available:
http://link.springer.com/article/10.1007/s00221-005-0255-z
M. G. Armstrong, D. J. Flynn, M. E.
Hammond, S. J. E. Jolly, and R. A. Salmon, “High frame-rate
television,” SMPTE Motion Imaging J., vol. 118, no. 7, pp. 54–59,
. 2009.
D. M. Hoffman, V. I. Karasev, and M. S.
Banks, “Temporal presentation protocols in stereoscopic displays:
Flicker visibility, perceived motion, and perceived depth,” J.
Soc. Inf. Display, vol. 19, no. 3, pp. 271–297, 2011. [Online].
Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3092720&tool=pmcentrez&rendertype=abstract
D. Kelly, “Motion and vision. ii.
Stabilized spatio-temporal threshold surface,” Josa, vol. 69, no.
10, pp. 1340–1349, 1979.
T. Fujine, Y. Kikuchi, M. Sugino, and Y.
Yoshida, “Real-life in-home viewing conditions for flat panel
displays and statistical characteristics of broadcast video
signal,” Japanese J. Appl. Phys., vol. 46, no. 3S, pp. 1358–1362,
2007. [Online]. Available:
http://stacks.iop.org/1347-4065/46/i=3S/a=1358
Y. Kuroki, T. Nishi, S. Kobayashi, H.
Oyaizu, and S. Yoshimura, “A psychophysical study of improvements
in motion-image quality by using high frame rates,” J. Soc. Inf.
Display, vol. 15, no. 1, pp. 61–68, . 2007.
T. J. Blanche, K. Koepsell, N. Swindale,
and B. A. Olshausen, “Predicting response variability in the
primary visual cortex,” Proc. Comput. Syst. Neuroscience,
COSYNE08, 2008.
Y. Kuroki, “Improvement of {3D} visual
image quality by using high frame rate,” J. Soc. Inf. Display,
vol. 20, no. 10, pp. 566–574, 2012. [Online]. Available:
http://onlinelibrary.wiley.com/doi/10.1002/jsid.107/abstract
Y. Kuroki, T. Nishi, S. Kobayashi, H.
Oyaizu, and S. Yoshimura, “A psychophysical study of improvements
in motion-image quality by using high frame rates,” J. Soc. Inf.
Display, vol. 15, no. 1, pp. 61–68, . 2007.
G. Grossman, R. Leigh, L. Abel, D.
Lanska, and S. Thurston, “Frequency and velocity of rotational
head perturbations during locomotion,” Exp. Brain Res., vol. 70,
no. 3, pp. 470–476, 1988.
T. Pozzo, A. Berthoz, and L. Lefort,
“Head kinematic during various motor tasks in humans,” Progress
Brain Res., vol. 80, pp. 377–383, 1989.
G. Grossman, R. Leigh, L. Abel, D.
Lanska, and S. Thurston, “Frequency and velocity of rotational
head perturbations during locomotion,” Exp. Brain Res., vol. 70,
no. 3, pp. 470–476, 1988.
E. Castet, J. Lorenceau, and C. Bonnet,
“The inverse intensity effect is not lost with stimuli in apparent
motion,” Vis. Res., vol. 33, no. 12, pp. 1697–1708,
1993.
G. A. Orban, J. de Wolf, and H. Maes,
“Factors influencing velocity coding in the human visual system,”
Vis. Res., vol. 24, no. 1, pp. 33–39, 1984.
S. P. McKee, G. H. Silverman, and K.
Nakayama, “Precise velocity discrimination despite random
variations in temporal frequency and contrast,” Vis. Res., vol.
26, no. 4, pp. 609–619, 1986.
S. P. McKee, “A local mechanism for
differential velocity detection,” Vis. Res., vol. 21, no. 4, pp.
491–500, 1981.
M. J. Berry, D. K. Warland, and M.
Meister, “The structure and precision of retinal spike trains,”
Proc. Nat. Acad. Sci. USA, vol. 94, no. 10, pp. 5411–5416,
1997.
W. I. Al-Atabany, M. A. Memon, S. M.
Downes, and P. A. Degenaar, “Designing and testing scene
enhancement algorithms for patients with retina degenerative
disorders,” Biomed. Eng. Online, vol. 9, p. 27,
2010.
S. P. McKee, G. H. Silverman, and K.
Nakayama, “Precise velocity discrimination despite random
variations in temporal frequency and contrast,” Vis. Res., vol.
26, no. 4, pp. 609–619, 1986.
Y. Kuroki, T. Nishi, S. Kobayashi, H.
Oyaizu, and S. Yoshimura, “A psychophysical study of improvements
in motion-image quality by using high frame rates,” J. Soc. Inf.
Display, vol. 15, no. 1, pp. 61–68, . 2007.
T. J. Blanche, K. Koepsell, N. Swindale,
and B. A. Olshausen, “Predicting response variability in the
primary visual cortex,” Proc. Comput. Syst. Neuroscience,
COSYNE08, 2008.
G. A. Orban, J. de Wolf, and H. Maes,
“Factors influencing velocity coding in the human visual system,”
Vis. Res., vol. 24, no. 1, pp. 33–39, 1984.
Y. Kuroki, T. Nishi, S. Kobayashi, H.
Oyaizu, and S. Yoshimura, “A psychophysical study of improvements
in motion-image quality by using high frame rates,” J. Soc. Inf.
Display, vol. 15, no. 1, pp. 61–68, . 2007.
T. Pozzo, A. Berthoz, and L. Lefort,
“Head kinematic during various motor tasks in humans,” Progress
Brain Res., vol. 80, pp. 377–383, 1989.
P. Reinagel and R. C. Reid, “Temporal
coding of visual information in the thalamus,” J. Neurosci., vol.
20, no. 14, pp. 5392–5400, 2000.
P. Reinagel and R. C. Reid, “Temporal
coding of visual information in the thalamus,” J. Neurosci., vol.
20, no. 14, pp. 5392–5400, 2000.
F. W. Campbell and J. Robson,
“Application of fourier analysis to the visibility of gratings,”
J. Physiol., vol. 197, no. 3, pp. 551–566, 1968.
M. Saikaet al., “Hyperspectral
two-dimensional display with a diffractive grating and a digital
mirror device,” in Proc. 9th Int. Conf. Opt.-Photon. Des
Fabrication., 2014, pp. 13PSp–25.
M. G. Armstrong, D. J. Flynn, M. E.
Hammond, S. J. E. Jolly, and R. A. Salmon, “High frame-rate
television,” SMPTE Motion Imaging J., vol. 118, no. 7, pp. 54–59,
. 2009.
J. B. Sampsell, “Digital micromirror
device and its application to projection displays,” J. Vacuum Sci.
Technol. B, Microelectron. Nanometer Struct., vol. 12, no. 6, pp.
3242–3246, 1994.
U. Ilg, Y. Jin, S. Schumann, and U.
Schwarz, “Preparation and execution of saccades: The problem of
limited capacity of computational resources,” Exp. Brain Res.,
vol. 171, no. 1, pp. 7–15, 2006. [Online]. Available:
http://link.springer.com/article/10.1007/s00221-005-0255-z
U. Ilg, Y. Jin, S. Schumann, and U.
Schwarz, “Preparation and execution of saccades: The problem of
limited capacity of computational resources,” Exp. Brain Res.,
vol. 171, no. 1, pp. 7–15, 2006. [Online]. Available:
http://link.springer.com/article/10.1007/s00221-005-0255-z
S. P. McKee, G. H. Silverman, and K.
Nakayama, “Precise velocity discrimination despite random
variations in temporal frequency and contrast,” Vis. Res., vol.
26, no. 4, pp. 609–619, 1986.
T. Fujine, Y. Kikuchi, M. Sugino, and Y.
Yoshida, “Real-life in-home viewing conditions for flat panel
displays and statistical characteristics of broadcast video
signal,” Japanese J. Appl. Phys., vol. 46, no. 3S, pp. 1358–1362,
2007. [Online]. Available:
http://stacks.iop.org/1347-4065/46/i=3S/a=1358
T. J. Blanche, K. Koepsell, N. Swindale,
and B. A. Olshausen, “Predicting response variability in the
primary visual cortex,” Proc. Comput. Syst. Neuroscience,
COSYNE08, 2008.
G. Grossman, R. Leigh, L. Abel, D.
Lanska, and S. Thurston, “Frequency and velocity of rotational
head perturbations during locomotion,” Exp. Brain Res., vol. 70,
no. 3, pp. 470–476, 1988.
L. Wanget al., “Photovoltaic retinal
prosthesis: Implant fabrication and performance,” J. Neural Eng.,
vol. 9, no. 4, 2012, Art. no. .
M. J. Berry, D. K. Warland, and M.
Meister, “The structure and precision of retinal spike trains,”
Proc. Nat. Acad. Sci. USA, vol. 94, no. 10, pp. 5411–5416,
1997.
A. B. Watson, “High frame rates and human
vision: A view through the window of visibility,” SMPTE Motion
Imaging J., vol. 122, no. 2, pp. 18–32, . 2013.
G. Westheimer, “Eye movement responses to
a horizontally moving visual stimulus,” A.M.A. Archives
Ophthalmol., vol. 52, no. 6, pp. 932–941, 1954. [Online].
Available:
http://dx.doi.org/10.1001/archopht.1954.00920050938013
R. Yaoet al., Oculus VR Best Practices
Guide. Menlo Park, CA, USA: Oculus VR, 2014.
T. Fujine, Y. Kikuchi, M. Sugino, and Y.
Yoshida, “Real-life in-home viewing conditions for flat panel
displays and statistical characteristics of broadcast video
signal,” Japanese J. Appl. Phys., vol. 46, no. 3S, pp. 1358–1362,
2007. [Online]. Available:
http://stacks.iop.org/1347-4065/46/i=3S/a=1358
Y. Kuroki, T. Nishi, S. Kobayashi, H.
Oyaizu, and S. Yoshimura, “A psychophysical study of improvements
in motion-image quality by using high frame rates,” J. Soc. Inf.
Display, vol. 15, no. 1, pp. 61–68, . 2007.
G. T. Buracas, A. M. Zador, M. R.
DeWeese, and T. D. Albright, “Efficient discrimination of temporal
patterns by motion-sensitive neurons in primate visual cortex,”
Neuron, vol. 20, no. 5, pp. 959–969, 1998.
G. Westheimer, “Eye movement responses to
a horizontally moving visual stimulus,” A.M.A. Archives
Ophthalmol., vol. 52, no. 6, pp. 932–941, 1954. [Online].
Available:
http://dx.doi.org/10.1001/archopht.1954.00920050938013
W. I. Al-Atabany, M. A. Memon, S. M.
Downes, and P. A. Degenaar, “Designing and testing scene
enhancement algorithms for patients with retina degenerative
disorders,” Biomed. Eng. Online, vol. 9, p. 27,
2010.
G. Grossman, R. Leigh, L. Abel, D.
Lanska, and S. Thurston, “Frequency and velocity of rotational
head perturbations during locomotion,” Exp. Brain Res., vol. 70,
no. 3, pp. 470–476, 1988.
U. Ilg, Y. Jin, S. Schumann, and U.
Schwarz, “Preparation and execution of saccades: The problem of
limited capacity of computational resources,” Exp. Brain Res.,
vol. 171, no. 1, pp. 7–15, 2006. [Online]. Available:
http://link.springer.com/article/10.1007/s00221-005-0255-z
L. Wanget al., “Photovoltaic retinal
prosthesis: Implant fabrication and performance,” J. Neural Eng.,
vol. 9, no. 4, 2012, Art. no. .
P. Reinagel and R. C. Reid, “Temporal
coding of visual information in the thalamus,” J. Neurosci., vol.
20, no. 14, pp. 5392–5400, 2000.
F. W. Campbell and J. Robson,
“Application of fourier analysis to the visibility of gratings,”
J. Physiol., vol. 197, no. 3, pp. 551–566, 1968.
Y. Kuroki, T. Nishi, S. Kobayashi, H.
Oyaizu, and S. Yoshimura, “A psychophysical study of improvements
in motion-image quality by using high frame rates,” J. Soc. Inf.
Display, vol. 15, no. 1, pp. 61–68, . 2007.
Y. Kuroki, “Improvement of {3D} visual
image quality by using high frame rate,” J. Soc. Inf. Display,
vol. 20, no. 10, pp. 566–574, 2012. [Online]. Available:
http://onlinelibrary.wiley.com/doi/10.1002/jsid.107/abstract
D. M. Hoffman, V. I. Karasev, and M. S.
Banks, “Temporal presentation protocols in stereoscopic displays:
Flicker visibility, perceived motion, and perceived depth,” J.
Soc. Inf. Display, vol. 19, no. 3, pp. 271–297, 2011. [Online].
Available:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3092720&tool=pmcentrez&rendertype=abstract
J. B. Sampsell, “Digital micromirror
device and its application to projection displays,” J. Vacuum Sci.
Technol. B, Microelectron. Nanometer Struct., vol. 12, no. 6, pp.
3242–3246, 1994.
T. Fujine, Y. Kikuchi, M. Sugino, and Y.
Yoshida, “Real-life in-home viewing conditions for flat panel
displays and statistical characteristics of broadcast video
signal,” Japanese J. Appl. Phys., vol. 46, no. 3S, pp. 1358–1362,
2007. [Online]. Available:
http://stacks.iop.org/1347-4065/46/i=3S/a=1358
D. Kelly, “Motion and vision. ii.
Stabilized spatio-temporal threshold surface,” Josa, vol. 69, no.
10, pp. 1340–1349, 1979.
G. T. Buracas, A. M. Zador, M. R.
DeWeese, and T. D. Albright, “Efficient discrimination of temporal
patterns by motion-sensitive neurons in primate visual cortex,”
Neuron, vol. 20, no. 5, pp. 959–969, 1998.
T. J. Blanche, K. Koepsell, N. Swindale,
and B. A. Olshausen, “Predicting response variability in the
primary visual cortex,” Proc. Comput. Syst. Neuroscience,
COSYNE08, 2008.
T. Pozzo, A. Berthoz, and L. Lefort,
“Head kinematic during various motor tasks in humans,” Progress
Brain Res., vol. 80, pp. 377–383, 1989.
A. B. Watson, “High frame rates and human
vision: A view through the window of visibility,” SMPTE Motion
Imaging J., vol. 122, no. 2, pp. 18–32, . 2013.
M. G. Armstrong, D. J. Flynn, M. E.
Hammond, S. J. E. Jolly, and R. A. Salmon, “High frame-rate
television,” SMPTE Motion Imaging J., vol. 118, no. 7, pp. 54–59,
. 2009.
G. Deffner, “Eye movement recordings to
study determinants of image quality in new display technology,”
Stud. Vis. Inf. Process., vol. 6, pp. 479–490,
1995.
E. Castet, J. Lorenceau, and C. Bonnet,
“The inverse intensity effect is not lost with stimuli in apparent
motion,” Vis. Res., vol. 33, no. 12, pp. 1697–1708,
1993.
S. P. McKee, “A local mechanism for
differential velocity detection,” Vis. Res., vol. 21, no. 4, pp.
491–500, 1981.
S. P. McKee, G. H. Silverman, and K.
Nakayama, “Precise velocity discrimination despite random
variations in temporal frequency and contrast,” Vis. Res., vol.
26, no. 4, pp. 609–619, 1986.
G. A. Orban, J. de Wolf, and H. Maes,
“Factors influencing velocity coding in the human visual system,”
Vis. Res., vol. 24, no. 1, pp. 33–39, 1984.
M. Saikaet al., “Hyperspectral
two-dimensional display with a diffractive grating and a digital
mirror device,” in Proc. 9th Int. Conf. Opt.-Photon. Des
Fabrication., 2014, pp. 13PSp–25.
“Texas instrument DLP Lightcrafter,”
[Online]. Available: www.ti.com/tool/dlplightcrafter, Accessed on:
23, 2016.
R. Yaoet al., Oculus VR Best Practices
Guide. Menlo Park, CA, USA: Oculus VR, 2014.
M. J. Berry, D. K. Warland, and M.
Meister, “The structure and precision of retinal spike trains,”
Proc. Nat. Acad. Sci. USA, vol. 94, no. 10, pp. 5411–5416,
1997.
W. Al-Atabany and P. Degenaar, “Scene
optimization for optogenetic retinal prosthesis,” in Proc. IEEE
Biomed. Circuits Syst. Conf., 2011, pp. 432–435. [Online].
Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6107820
K. Guttag, “TI DLP diamond pixel,”
[Online]. Available:
http://www.kguttag.com/2012/02/09/ti-dlp-diamond-pixel/, 2012,
Accessed on: 23, 2016.
OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.