Abstract

A detailed background into the reasons for the feverish interest and growing impact on commercial market share of organic light-emitting diode (OLED) technology for lighting and display applications is given. Following this, the increasing discussion over whether electroluminescent devices based on quantum dots will ever challenge that of organics in displays is considered. The unique physics and chemistry of quantum dots results in narrow emission bands and increased stability over organic dyes meaning the potential for this is significant. The current best efficiencies of quantum dot devices and associated device structures from the literature are presented followed by a comparison of devices fabricated with organic materials, in particular those of polymers, metal complexes (fluorescent and phosphorescent) and small molecules.

© 2015 CCBY

PDF Article

References

  • View by:
  • |
  • |

  1. G. Destriau, "Researches upon electro-photo-luminescence," Trans. Faraday Soc. 35, 227-233 (1939).
  2. A. Bernanose, M. Comte, P. Vouaux, "Electroluminescence of organic compounds," J. Chim. Phys. 50, 64-68 (1953).
  3. A. Bernanose, "Electroluminescence of organic compounds," Brit. J. Appl. Phys. 6, S54-S55 (1955).
  4. W. Helfrich, W. G. Schneider, "Recombination radiation in anthracene crystals," Phys. Rev. Lett. 14, 229-231 (1965).
  5. N. Holonyak Jr, S. F. Bevacqua, "Coherent (visible) light emission from ${{Ga}}({{As}}_{1-x-Px})$ junctions," Appl. Phys. Lett. 1, 82-83 (1962).
  6. M. G. Craford, F. M. Steranka, Encylopaedia of Applied Physics (Wiley-VCH, 1994) pp. 485-514.
  7. T. Minami, H. Yamada, Y. Kubota, T. Miyata, "Mn-activated ${\hbox{Ca}}{\hbox{--}}{\hbox{Ga}}_{2}{\hbox{O}}_{3}$ phosphors for thin-film electroluminescent devices," Jpn. J. Appl. Phys. 36, L1191-L1194 (1997).
  8. S. Okamoto, E. Nakazawa, "Transient emission mechanisms in thin-film electroluminescent devices with rare-earth-ion-activated SrS phosphor layers," Jap. J. Appl. Phys. 34, 521-526 (1995).
  9. W. A. Barrow, R. T. Tuenge, Full color hybrid TFEL display screen U.S. Patent 4801844 A (1989).
  10. C. W. Tang, S. A. VanSlyke, "Organic electroluminescent diodes," Appl. Phys. Lett. 51, 913-915 (1987).
  11. J. M. Burroughes, "Light-emitting diodes based on conjugated polymers," Nature 347, 539-541 (1990).
  12. T. Komoda, "OLED lighting," Master Class 3, IDtechEX Conf. Printed Electron. (2014).
  13. R. Xie, D. Battaglia, X. Peng, "Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared," J. Amer. Chem. Soc. 129, 15432-15433 (2007).
  14. J. Lim, W. K. Bae, D. Lee, M. K. Nam, J. Jung, C. Lee, K. Char, S. Lee, "InP@ZnSeS, Core@Composition gradient shell quantum dots with enhanced stability," Chem. Mater. 23, 4459-4463 (2011).
  15. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, "Quantum dots versus organic dyes as fluorescent labels," Nature Meth. 5, 763-775 (2008).
  16. P. O. Anikeeva, C. F. Madigan, S. A. Coe-Sullivan, J. S. Steckel, M. G. Bawendi, V. Bulović, "Photoluminescence of CdSe/ZnS core/shell quantum dots enhanced by energy transfer from a phosphorescent donor," Chem. Phys. Lett. 424, 120-125 (2006).
  17. V. Wood, V. Bulović, "Colloidal quantum dot light-emitting devices," Nano Rev. 1, 5202-5208 (2010).
  18. B. S. Mashford, "High-efficiency quantum-dot light-emitting devices with enhanced charge injection," Nature Photon. 7, 407-412 (2013).
  19. J. Zhao, "Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer," Nano. Lett. 6, 463-467 (2006).
  20. H. M. Haverinen, R. A. Myllylä, G. E. Jabbour, "Inkjet printed RGB quantum dot-hybrid LED," J. Display Technol. 6, 87-89 (2010).
  21. J. S. Steckel, "Color-saturated green-emitting QD-LEDs," Angwe. Chem. Int. Ed. 45, 5796-5799 (2006).
  22. D. Bera, L. Qian, P. H. Holloway, Luminescent Materials and Applications (Wiley, 2008) pp. 19-65.
  23. X. B. Chen, Y. B. Lou, A. C. Samia, C. Burda, "Coherency strain effects on the optical response of core/shell heteronanostructures," Nano Lett. 3, 799-803 (2003).
  24. M. Grabolle, J. Ziegler, A. Merkulor, T. Nann, U. Resch-Genger, "Stability and fluorescence quantum yield of CdSe-ZnS quantum dots—Influence of the thickness of the ZnS shell," Ann. New York Acad. Sci. 1130, 235-241 (2008).
  25. J. Gilbertson, T. Davis, "Colloidal CdSe quantum dot electroluminescence: Ligands and light-emitting diodes," Microchim. Acta 160, 345-350 (2007).
  26. B. Ludolph, M. A. Malik, P. O'Brien, N. Revaprasadu, "Novel single molecule precursor routes for the direct synthesis of highly monodispersed quantum dots of cadmium or zinc sulfide or selenide," Chem. Commun. 17, 1849-1850 (1998).
  27. M. Green, "The Nature of Quantum Dot Capping Ligands," J. Mater. Chem. 20, 5797-5809 (2010).
  28. C. B. Murray, D. J. Norris, M. G. Bawendi, "Synthesis and characterisation of nearly monodisperse CdE $({\hbox{E}}={\hbox{S, Se, Te}})$ semiconductor nanocrystallites," J. Amer. Chem. Soc. 115, 8706-8715 (1993).
  29. V. Wood, M. J. Panzer, J. E. Halpert, J.-M. Caruge, M. G. Bawendi, V. Bulović, "Selection of metal oxide charge transport layers for colloidal quantum dot LEDs," ACS Nano 3, 3581-3586 (2009).
  30. D. Y. Kondakov, T. D. Pawlik, T. K. Hatwat, J. P. Spindler, "Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes," J. Appl. Phys. 106, 124510-124517 (2009).
  31. F. B. Dias, "Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters," Adv. Mater. 25, 3707-3714 (2013).
  32. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, "Highly efficient organic light-emitting diodes from delayed fluorescence," Nature 492, 234-238 (2012).
  33. T. Tsujimura, OLED Displays: Fundamentals and Applications (Wiley-SID Series, 2012).
  34. D. Gerion, "Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots," J. Phys. Chem. B 105, 8861-8871 (2001).
  35. B. S Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, P. T. Kazlas, "High-efficiency quantum-dot light-emitting devices with enhanced charge injection," Nature Photon. 7, 407-412 (2013).
  36. H.-M. Kim, J. Jang, "High-efficiency inverted quantum-dot light emitting diodes for display," SID 2014 Symp. Dig. Tech. Papers (2014) pp. 67-70.
  37. K. Qasim, J. Chen, W. Lei, Z. Li, J. Pan, Q. Li, J. Xia, Y. Tu, "Influence of layer thickness on the performance of quantum dots light emitting devices," SID 2014 Symp. Dig. Tech. Papers pp. 63-66.
  38. J. Lim, W. K. Bae, J. Kwak, S. Lee, C. Lee, C. Lee, K. Char, "Perspective on synthesis, device structures, and printing processes for quantum dot displays," Opt. Mater. Express 2, 594-628 (2012).
  39. J. Lim, "Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots," ACS Nano 7, 9019-9206 (2013).
  40. J. Kwak, "Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure," Nano Lett. 12, 2362-2366 (2012).
  41. H. Shen, "Efficient and bright colloidal quantum dot light-emitting diodes via controlling the shell thickness of quantum dots," ACS Appl. Mater. Interfaces 5, 12011-12016 (2013).
  42. P. O. Anikeeva, C. F. Madigan, S. A. Coe-Sullivan, J. S. Steckel, M. G. Bawendi, V. Bulović, "Photoluminescence of CdSe/ZnS core/shell quantum dots enhanced by energy transfer from a phosphorescent donor," Chem. Phys. Lett. 424, 120 (2006).
  43. P. O. Anikeeva, J. E. Halpert, M. G. Bagwendi, V. Bulović, "Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum," Nano Lett. 9, 2532-2536 (2009).
  44. B. Chen, "Highly emissive and colour tunable ${\hbox{CuInS}}_{2}$-based colloidal semiconductor nanocrystals: Off stoichiometry effects and improved electroluminescence performance," Adv. Functional Mater. 22, 2081-2088 (2012).
  45. P. Kathirgamanathan, "Discovery of two new phases of zirconium tetrakis(8-hydroxyquinolinolate): Synthesiscrystal structure and their electron transporting characteristics in organic light emitting diodes (OLEDs)," J. Mater. Chem. 21, 1762-1771 (2011).
  46. P. Kathirgamanathan, L. Bushby, M. Kumarverl, S. Ravichandran, S. Surendrakumar, "Red and green quantum dot based LEDs demonstrating excellent color coordinates," SID Conf. Proc. (2015).

2013 (5)

B. S. Mashford, "High-efficiency quantum-dot light-emitting devices with enhanced charge injection," Nature Photon. 7, 407-412 (2013).

F. B. Dias, "Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters," Adv. Mater. 25, 3707-3714 (2013).

B. S Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, P. T. Kazlas, "High-efficiency quantum-dot light-emitting devices with enhanced charge injection," Nature Photon. 7, 407-412 (2013).

J. Lim, "Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots," ACS Nano 7, 9019-9206 (2013).

H. Shen, "Efficient and bright colloidal quantum dot light-emitting diodes via controlling the shell thickness of quantum dots," ACS Appl. Mater. Interfaces 5, 12011-12016 (2013).

2012 (4)

B. Chen, "Highly emissive and colour tunable ${\hbox{CuInS}}_{2}$-based colloidal semiconductor nanocrystals: Off stoichiometry effects and improved electroluminescence performance," Adv. Functional Mater. 22, 2081-2088 (2012).

J. Kwak, "Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure," Nano Lett. 12, 2362-2366 (2012).

J. Lim, W. K. Bae, J. Kwak, S. Lee, C. Lee, C. Lee, K. Char, "Perspective on synthesis, device structures, and printing processes for quantum dot displays," Opt. Mater. Express 2, 594-628 (2012).

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, "Highly efficient organic light-emitting diodes from delayed fluorescence," Nature 492, 234-238 (2012).

2011 (2)

P. Kathirgamanathan, "Discovery of two new phases of zirconium tetrakis(8-hydroxyquinolinolate): Synthesiscrystal structure and their electron transporting characteristics in organic light emitting diodes (OLEDs)," J. Mater. Chem. 21, 1762-1771 (2011).

J. Lim, W. K. Bae, D. Lee, M. K. Nam, J. Jung, C. Lee, K. Char, S. Lee, "InP@ZnSeS, Core@Composition gradient shell quantum dots with enhanced stability," Chem. Mater. 23, 4459-4463 (2011).

2010 (3)

V. Wood, V. Bulović, "Colloidal quantum dot light-emitting devices," Nano Rev. 1, 5202-5208 (2010).

H. M. Haverinen, R. A. Myllylä, G. E. Jabbour, "Inkjet printed RGB quantum dot-hybrid LED," J. Display Technol. 6, 87-89 (2010).

M. Green, "The Nature of Quantum Dot Capping Ligands," J. Mater. Chem. 20, 5797-5809 (2010).

2009 (3)

V. Wood, M. J. Panzer, J. E. Halpert, J.-M. Caruge, M. G. Bawendi, V. Bulović, "Selection of metal oxide charge transport layers for colloidal quantum dot LEDs," ACS Nano 3, 3581-3586 (2009).

D. Y. Kondakov, T. D. Pawlik, T. K. Hatwat, J. P. Spindler, "Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes," J. Appl. Phys. 106, 124510-124517 (2009).

P. O. Anikeeva, J. E. Halpert, M. G. Bagwendi, V. Bulović, "Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum," Nano Lett. 9, 2532-2536 (2009).

2008 (2)

M. Grabolle, J. Ziegler, A. Merkulor, T. Nann, U. Resch-Genger, "Stability and fluorescence quantum yield of CdSe-ZnS quantum dots—Influence of the thickness of the ZnS shell," Ann. New York Acad. Sci. 1130, 235-241 (2008).

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, "Quantum dots versus organic dyes as fluorescent labels," Nature Meth. 5, 763-775 (2008).

2007 (2)

R. Xie, D. Battaglia, X. Peng, "Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared," J. Amer. Chem. Soc. 129, 15432-15433 (2007).

J. Gilbertson, T. Davis, "Colloidal CdSe quantum dot electroluminescence: Ligands and light-emitting diodes," Microchim. Acta 160, 345-350 (2007).

2006 (4)

P. O. Anikeeva, C. F. Madigan, S. A. Coe-Sullivan, J. S. Steckel, M. G. Bawendi, V. Bulović, "Photoluminescence of CdSe/ZnS core/shell quantum dots enhanced by energy transfer from a phosphorescent donor," Chem. Phys. Lett. 424, 120 (2006).

P. O. Anikeeva, C. F. Madigan, S. A. Coe-Sullivan, J. S. Steckel, M. G. Bawendi, V. Bulović, "Photoluminescence of CdSe/ZnS core/shell quantum dots enhanced by energy transfer from a phosphorescent donor," Chem. Phys. Lett. 424, 120-125 (2006).

J. S. Steckel, "Color-saturated green-emitting QD-LEDs," Angwe. Chem. Int. Ed. 45, 5796-5799 (2006).

J. Zhao, "Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer," Nano. Lett. 6, 463-467 (2006).

2003 (1)

X. B. Chen, Y. B. Lou, A. C. Samia, C. Burda, "Coherency strain effects on the optical response of core/shell heteronanostructures," Nano Lett. 3, 799-803 (2003).

2001 (1)

D. Gerion, "Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots," J. Phys. Chem. B 105, 8861-8871 (2001).

1998 (1)

B. Ludolph, M. A. Malik, P. O'Brien, N. Revaprasadu, "Novel single molecule precursor routes for the direct synthesis of highly monodispersed quantum dots of cadmium or zinc sulfide or selenide," Chem. Commun. 17, 1849-1850 (1998).

1997 (1)

T. Minami, H. Yamada, Y. Kubota, T. Miyata, "Mn-activated ${\hbox{Ca}}{\hbox{--}}{\hbox{Ga}}_{2}{\hbox{O}}_{3}$ phosphors for thin-film electroluminescent devices," Jpn. J. Appl. Phys. 36, L1191-L1194 (1997).

1995 (1)

S. Okamoto, E. Nakazawa, "Transient emission mechanisms in thin-film electroluminescent devices with rare-earth-ion-activated SrS phosphor layers," Jap. J. Appl. Phys. 34, 521-526 (1995).

1993 (1)

C. B. Murray, D. J. Norris, M. G. Bawendi, "Synthesis and characterisation of nearly monodisperse CdE $({\hbox{E}}={\hbox{S, Se, Te}})$ semiconductor nanocrystallites," J. Amer. Chem. Soc. 115, 8706-8715 (1993).

1990 (1)

J. M. Burroughes, "Light-emitting diodes based on conjugated polymers," Nature 347, 539-541 (1990).

1987 (1)

C. W. Tang, S. A. VanSlyke, "Organic electroluminescent diodes," Appl. Phys. Lett. 51, 913-915 (1987).

1965 (1)

W. Helfrich, W. G. Schneider, "Recombination radiation in anthracene crystals," Phys. Rev. Lett. 14, 229-231 (1965).

1962 (1)

N. Holonyak Jr, S. F. Bevacqua, "Coherent (visible) light emission from ${{Ga}}({{As}}_{1-x-Px})$ junctions," Appl. Phys. Lett. 1, 82-83 (1962).

1955 (1)

A. Bernanose, "Electroluminescence of organic compounds," Brit. J. Appl. Phys. 6, S54-S55 (1955).

1953 (1)

A. Bernanose, M. Comte, P. Vouaux, "Electroluminescence of organic compounds," J. Chim. Phys. 50, 64-68 (1953).

1939 (1)

G. Destriau, "Researches upon electro-photo-luminescence," Trans. Faraday Soc. 35, 227-233 (1939).

ACS Appl. Mater. Interfaces (1)

H. Shen, "Efficient and bright colloidal quantum dot light-emitting diodes via controlling the shell thickness of quantum dots," ACS Appl. Mater. Interfaces 5, 12011-12016 (2013).

ACS Nano (2)

J. Lim, "Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots," ACS Nano 7, 9019-9206 (2013).

V. Wood, M. J. Panzer, J. E. Halpert, J.-M. Caruge, M. G. Bawendi, V. Bulović, "Selection of metal oxide charge transport layers for colloidal quantum dot LEDs," ACS Nano 3, 3581-3586 (2009).

Adv. Functional Mater. (1)

B. Chen, "Highly emissive and colour tunable ${\hbox{CuInS}}_{2}$-based colloidal semiconductor nanocrystals: Off stoichiometry effects and improved electroluminescence performance," Adv. Functional Mater. 22, 2081-2088 (2012).

Adv. Mater. (1)

F. B. Dias, "Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters," Adv. Mater. 25, 3707-3714 (2013).

Angwe. Chem. Int. Ed. (1)

J. S. Steckel, "Color-saturated green-emitting QD-LEDs," Angwe. Chem. Int. Ed. 45, 5796-5799 (2006).

Ann. New York Acad. Sci. (1)

M. Grabolle, J. Ziegler, A. Merkulor, T. Nann, U. Resch-Genger, "Stability and fluorescence quantum yield of CdSe-ZnS quantum dots—Influence of the thickness of the ZnS shell," Ann. New York Acad. Sci. 1130, 235-241 (2008).

Appl. Phys. Lett. (2)

N. Holonyak Jr, S. F. Bevacqua, "Coherent (visible) light emission from ${{Ga}}({{As}}_{1-x-Px})$ junctions," Appl. Phys. Lett. 1, 82-83 (1962).

C. W. Tang, S. A. VanSlyke, "Organic electroluminescent diodes," Appl. Phys. Lett. 51, 913-915 (1987).

Brit. J. Appl. Phys. (1)

A. Bernanose, "Electroluminescence of organic compounds," Brit. J. Appl. Phys. 6, S54-S55 (1955).

Chem. Mater. (1)

J. Lim, W. K. Bae, D. Lee, M. K. Nam, J. Jung, C. Lee, K. Char, S. Lee, "InP@ZnSeS, Core@Composition gradient shell quantum dots with enhanced stability," Chem. Mater. 23, 4459-4463 (2011).

Chem. Commun. (1)

B. Ludolph, M. A. Malik, P. O'Brien, N. Revaprasadu, "Novel single molecule precursor routes for the direct synthesis of highly monodispersed quantum dots of cadmium or zinc sulfide or selenide," Chem. Commun. 17, 1849-1850 (1998).

Chem. Phys. Lett. (2)

P. O. Anikeeva, C. F. Madigan, S. A. Coe-Sullivan, J. S. Steckel, M. G. Bawendi, V. Bulović, "Photoluminescence of CdSe/ZnS core/shell quantum dots enhanced by energy transfer from a phosphorescent donor," Chem. Phys. Lett. 424, 120-125 (2006).

P. O. Anikeeva, C. F. Madigan, S. A. Coe-Sullivan, J. S. Steckel, M. G. Bawendi, V. Bulović, "Photoluminescence of CdSe/ZnS core/shell quantum dots enhanced by energy transfer from a phosphorescent donor," Chem. Phys. Lett. 424, 120 (2006).

J. Amer. Chem. Soc. (1)

R. Xie, D. Battaglia, X. Peng, "Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared," J. Amer. Chem. Soc. 129, 15432-15433 (2007).

J. Amer. Chem. Soc. (1)

C. B. Murray, D. J. Norris, M. G. Bawendi, "Synthesis and characterisation of nearly monodisperse CdE $({\hbox{E}}={\hbox{S, Se, Te}})$ semiconductor nanocrystallites," J. Amer. Chem. Soc. 115, 8706-8715 (1993).

J. Appl. Phys. (1)

D. Y. Kondakov, T. D. Pawlik, T. K. Hatwat, J. P. Spindler, "Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes," J. Appl. Phys. 106, 124510-124517 (2009).

J. Chim. Phys. (1)

A. Bernanose, M. Comte, P. Vouaux, "Electroluminescence of organic compounds," J. Chim. Phys. 50, 64-68 (1953).

J. Display Technol. (1)

H. M. Haverinen, R. A. Myllylä, G. E. Jabbour, "Inkjet printed RGB quantum dot-hybrid LED," J. Display Technol. 6, 87-89 (2010).

J. Mater. Chem. (2)

M. Green, "The Nature of Quantum Dot Capping Ligands," J. Mater. Chem. 20, 5797-5809 (2010).

P. Kathirgamanathan, "Discovery of two new phases of zirconium tetrakis(8-hydroxyquinolinolate): Synthesiscrystal structure and their electron transporting characteristics in organic light emitting diodes (OLEDs)," J. Mater. Chem. 21, 1762-1771 (2011).

J. Phys. Chem. B (1)

D. Gerion, "Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots," J. Phys. Chem. B 105, 8861-8871 (2001).

Jap. J. Appl. Phys. (1)

S. Okamoto, E. Nakazawa, "Transient emission mechanisms in thin-film electroluminescent devices with rare-earth-ion-activated SrS phosphor layers," Jap. J. Appl. Phys. 34, 521-526 (1995).

Jpn. J. Appl. Phys. (1)

T. Minami, H. Yamada, Y. Kubota, T. Miyata, "Mn-activated ${\hbox{Ca}}{\hbox{--}}{\hbox{Ga}}_{2}{\hbox{O}}_{3}$ phosphors for thin-film electroluminescent devices," Jpn. J. Appl. Phys. 36, L1191-L1194 (1997).

Microchim. Acta (1)

J. Gilbertson, T. Davis, "Colloidal CdSe quantum dot electroluminescence: Ligands and light-emitting diodes," Microchim. Acta 160, 345-350 (2007).

Nano Lett. (1)

X. B. Chen, Y. B. Lou, A. C. Samia, C. Burda, "Coherency strain effects on the optical response of core/shell heteronanostructures," Nano Lett. 3, 799-803 (2003).

Nano Lett. (2)

P. O. Anikeeva, J. E. Halpert, M. G. Bagwendi, V. Bulović, "Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum," Nano Lett. 9, 2532-2536 (2009).

J. Kwak, "Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure," Nano Lett. 12, 2362-2366 (2012).

Nano Rev. (1)

V. Wood, V. Bulović, "Colloidal quantum dot light-emitting devices," Nano Rev. 1, 5202-5208 (2010).

Nano. Lett. (1)

J. Zhao, "Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer," Nano. Lett. 6, 463-467 (2006).

Nature Photon. (2)

B. S Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, P. T. Kazlas, "High-efficiency quantum-dot light-emitting devices with enhanced charge injection," Nature Photon. 7, 407-412 (2013).

B. S. Mashford, "High-efficiency quantum-dot light-emitting devices with enhanced charge injection," Nature Photon. 7, 407-412 (2013).

Nature (2)

J. M. Burroughes, "Light-emitting diodes based on conjugated polymers," Nature 347, 539-541 (1990).

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, "Highly efficient organic light-emitting diodes from delayed fluorescence," Nature 492, 234-238 (2012).

Nature Meth. (1)

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, T. Nann, "Quantum dots versus organic dyes as fluorescent labels," Nature Meth. 5, 763-775 (2008).

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

W. Helfrich, W. G. Schneider, "Recombination radiation in anthracene crystals," Phys. Rev. Lett. 14, 229-231 (1965).

Trans. Faraday Soc. (1)

G. Destriau, "Researches upon electro-photo-luminescence," Trans. Faraday Soc. 35, 227-233 (1939).

Other (8)

W. A. Barrow, R. T. Tuenge, Full color hybrid TFEL display screen U.S. Patent 4801844 A (1989).

M. G. Craford, F. M. Steranka, Encylopaedia of Applied Physics (Wiley-VCH, 1994) pp. 485-514.

T. Komoda, "OLED lighting," Master Class 3, IDtechEX Conf. Printed Electron. (2014).

H.-M. Kim, J. Jang, "High-efficiency inverted quantum-dot light emitting diodes for display," SID 2014 Symp. Dig. Tech. Papers (2014) pp. 67-70.

K. Qasim, J. Chen, W. Lei, Z. Li, J. Pan, Q. Li, J. Xia, Y. Tu, "Influence of layer thickness on the performance of quantum dots light emitting devices," SID 2014 Symp. Dig. Tech. Papers pp. 63-66.

D. Bera, L. Qian, P. H. Holloway, Luminescent Materials and Applications (Wiley, 2008) pp. 19-65.

T. Tsujimura, OLED Displays: Fundamentals and Applications (Wiley-SID Series, 2012).

P. Kathirgamanathan, L. Bushby, M. Kumarverl, S. Ravichandran, S. Surendrakumar, "Red and green quantum dot based LEDs demonstrating excellent color coordinates," SID Conf. Proc. (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.