Abstract

Electronic paper, or e-Paper, for use in displays has seen rapid growth in the past decade because of its potential as an alternative to traditional transmissive displays. Offering several critical advantages over current display technologies, including high contrast in direct sunlight, wide viewing angles, and compatibility with flexible substrate processing, electrowetting displays (EWDs) have made it to the forefront of e-Paper research and development efforts. Here, we describe a new design for the fabrication of multi-color, bistable electrowetting displays. Using a laser-based process to pattern an in-plane electrode design, liquid can be manipulated out-of-plane. This process relies on electromechanical pressure forcing water in and out of channels, causing colored oil to be displaced. When voltage is removed, the oil remains in its current position, resulting in bistability. We have demonstrated multi-color, bistable pixels that maintain their state at ${\rm V}= 0$ for several days, which drastically reduces the power required to drive the display.

© 2014 USGov

PDF Article

References

  • View by:
  • |
  • |

  1. F. Mugele, J.-C. Baret, "Electrowetting: From basics to applications," J. Phys.: Condensed Matter 17, R705-R774 (2005).
  2. J. Heikenfeld, P. Drzaic, J.-S. Yeo, T. Koch, "Review paper: A critical review of the present and future prospects for electronic paper," J. SID 19, (2011).
  3. G. Beni, S. Hackwood, "Electro-wetting displays," Appl. Phys. Lett. 29, 207-209 (1981).
  4. K. Blankenbach, A. Schmoll, A. Bitman, F. Bartels, D. Jerosch, "Novel highly reflective and bistable electrowetting displays," J. Soc. Inf. Display 16, 237-244 (2008).
  5. J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, R. Schwartz, "Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions," Nature Photon. 3, 292-296 (2009).
  6. H. You, A. J. Steckl, "Three-color electrowetting display device for electronic paper," Appl. Phys. Lett. 97, 023514 (2010).
  7. B. Comiskey, J. D. Albert, H. Yoshizawa, J. Jacobson, "An electrophoretic ink for all-printed reflective electronic displays," Nature 394, 253-255 (1998).
  8. M. Hagedon, S. Yang, A. Russell, J. Heikenfeld, "Bright e-Paper by transport of ink through a white electrofluidic imaging film," Nature Commun. 3, 1173 (2012).
  9. K. M. Metkus, M. S. Osofsky, N. A. Charipar, A. Piqué, "Laser direct-write for low AC loss high temperature superconductor applications," J. Laser Micro/Nanoeng. 8, 19-23 (2013).
  10. N. A. Charipar, K. M. Charipar, H. Kim, M. A. Kirleis, R. C. Auyeung, A. T. Smith, S. A. Mathews, A. Piqué, "Laser processing of 2D and 3D metamaterial structures," Proc. SPIE (2013).
  11. S. Yang, K. Zhou, E. Kreit, J. Heikenfeld, "High reflectivity electrofluidic pixels with zero-power grayscale operation," Appl. Phys. Lett. 97, 143501 (2010).
  12. J. Berthier, Microdrops and Digital Microfluidics (Elsevier, 2013).
  13. P.-G. de Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, 2004).
  14. J. F. Oliver, C. Huh, S. G. Mason, "Resistance to spreading of liquids by sharp edges," J. Colloid Interface Sci. 59, 568-581 (1977).
  15. K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, M. R. Johnson, "A full description of a simple and scalable fabrication process for electrowetting displays," J. Micromech. Microeng. 19, (2009).
  16. F. Li, F. Mugele, "How to make sticky surfaces slippery: Contact angle hysteresis in electrowetting with alternating voltage," Appl. Phys. Lett. 92, 244108 (2008).
  17. S. Chevalliot, J. Heikenfeld, L. Clapp, A. Milarcik, S. Vilner, "Analysis of nonaqueous electrowetting fluids for displays," J. Display Technol. 7, 649-656 (2011).
  18. H. Verheijen, M. Prins, "Reversible electrowetting and trapping of charge: Models and experiments," Langmuir 15, 6166-6620 (1999).
  19. T. Roques-Carmes, S. Palmier, R. A. Hayes, L. J. Schlangen, "The effect of the oil/water interfacial tension on electrowetting driven fluid motion," Colloids and Surfaces A 267, 56-63 (2005).
  20. T. Roques-Carmes, R. A. Hayes, B. J. Feenstra, L. J. M. Schlangen, "Liquid behavior inside a reflective display pixel based on electrowetting," J. Appl. Phys. 95, 4389-4396 (2004).
  21. T. B. Jones, "An electromechanical interpretation of electrowetting," J. Micromechanics and Microengineering 15, 1184-1187 (2005).
  22. F. Mugele, J. Buehrle, "Equilibrium drop surface profiles in electric fields," J. Phys.: Condensed Matter 19, 375112 (2007).
  23. R. Hayes, B. J. Feenstra, "Video-speed electronic paper based on electrowetting," Nature 425, 383-385 (2003).
  24. M. Dhindsa, S. Kuiper, J. Heikenfeld, "Reliable and low-voltage electrowetting on thin parylene films," Thin Solid Films 519, 3346-3351 (2011).

2013 (1)

K. M. Metkus, M. S. Osofsky, N. A. Charipar, A. Piqué, "Laser direct-write for low AC loss high temperature superconductor applications," J. Laser Micro/Nanoeng. 8, 19-23 (2013).

2012 (1)

M. Hagedon, S. Yang, A. Russell, J. Heikenfeld, "Bright e-Paper by transport of ink through a white electrofluidic imaging film," Nature Commun. 3, 1173 (2012).

2011 (3)

J. Heikenfeld, P. Drzaic, J.-S. Yeo, T. Koch, "Review paper: A critical review of the present and future prospects for electronic paper," J. SID 19, (2011).

S. Chevalliot, J. Heikenfeld, L. Clapp, A. Milarcik, S. Vilner, "Analysis of nonaqueous electrowetting fluids for displays," J. Display Technol. 7, 649-656 (2011).

M. Dhindsa, S. Kuiper, J. Heikenfeld, "Reliable and low-voltage electrowetting on thin parylene films," Thin Solid Films 519, 3346-3351 (2011).

2010 (2)

S. Yang, K. Zhou, E. Kreit, J. Heikenfeld, "High reflectivity electrofluidic pixels with zero-power grayscale operation," Appl. Phys. Lett. 97, 143501 (2010).

H. You, A. J. Steckl, "Three-color electrowetting display device for electronic paper," Appl. Phys. Lett. 97, 023514 (2010).

2009 (2)

J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, R. Schwartz, "Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions," Nature Photon. 3, 292-296 (2009).

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, M. R. Johnson, "A full description of a simple and scalable fabrication process for electrowetting displays," J. Micromech. Microeng. 19, (2009).

2008 (2)

F. Li, F. Mugele, "How to make sticky surfaces slippery: Contact angle hysteresis in electrowetting with alternating voltage," Appl. Phys. Lett. 92, 244108 (2008).

K. Blankenbach, A. Schmoll, A. Bitman, F. Bartels, D. Jerosch, "Novel highly reflective and bistable electrowetting displays," J. Soc. Inf. Display 16, 237-244 (2008).

2007 (1)

F. Mugele, J. Buehrle, "Equilibrium drop surface profiles in electric fields," J. Phys.: Condensed Matter 19, 375112 (2007).

2005 (3)

T. B. Jones, "An electromechanical interpretation of electrowetting," J. Micromechanics and Microengineering 15, 1184-1187 (2005).

F. Mugele, J.-C. Baret, "Electrowetting: From basics to applications," J. Phys.: Condensed Matter 17, R705-R774 (2005).

T. Roques-Carmes, S. Palmier, R. A. Hayes, L. J. Schlangen, "The effect of the oil/water interfacial tension on electrowetting driven fluid motion," Colloids and Surfaces A 267, 56-63 (2005).

2004 (1)

T. Roques-Carmes, R. A. Hayes, B. J. Feenstra, L. J. M. Schlangen, "Liquid behavior inside a reflective display pixel based on electrowetting," J. Appl. Phys. 95, 4389-4396 (2004).

2003 (1)

R. Hayes, B. J. Feenstra, "Video-speed electronic paper based on electrowetting," Nature 425, 383-385 (2003).

1999 (1)

H. Verheijen, M. Prins, "Reversible electrowetting and trapping of charge: Models and experiments," Langmuir 15, 6166-6620 (1999).

1998 (1)

B. Comiskey, J. D. Albert, H. Yoshizawa, J. Jacobson, "An electrophoretic ink for all-printed reflective electronic displays," Nature 394, 253-255 (1998).

1981 (1)

G. Beni, S. Hackwood, "Electro-wetting displays," Appl. Phys. Lett. 29, 207-209 (1981).

1977 (1)

J. F. Oliver, C. Huh, S. G. Mason, "Resistance to spreading of liquids by sharp edges," J. Colloid Interface Sci. 59, 568-581 (1977).

Appl. Phys. Lett. (1)

H. You, A. J. Steckl, "Three-color electrowetting display device for electronic paper," Appl. Phys. Lett. 97, 023514 (2010).

Appl. Phys. Lett. (3)

G. Beni, S. Hackwood, "Electro-wetting displays," Appl. Phys. Lett. 29, 207-209 (1981).

S. Yang, K. Zhou, E. Kreit, J. Heikenfeld, "High reflectivity electrofluidic pixels with zero-power grayscale operation," Appl. Phys. Lett. 97, 143501 (2010).

F. Li, F. Mugele, "How to make sticky surfaces slippery: Contact angle hysteresis in electrowetting with alternating voltage," Appl. Phys. Lett. 92, 244108 (2008).

Colloids and Surfaces A (1)

T. Roques-Carmes, S. Palmier, R. A. Hayes, L. J. Schlangen, "The effect of the oil/water interfacial tension on electrowetting driven fluid motion," Colloids and Surfaces A 267, 56-63 (2005).

J. Appl. Phys. (1)

T. Roques-Carmes, R. A. Hayes, B. J. Feenstra, L. J. M. Schlangen, "Liquid behavior inside a reflective display pixel based on electrowetting," J. Appl. Phys. 95, 4389-4396 (2004).

J. Soc. Inf. Display (1)

K. Blankenbach, A. Schmoll, A. Bitman, F. Bartels, D. Jerosch, "Novel highly reflective and bistable electrowetting displays," J. Soc. Inf. Display 16, 237-244 (2008).

J. Colloid Interface Sci. (1)

J. F. Oliver, C. Huh, S. G. Mason, "Resistance to spreading of liquids by sharp edges," J. Colloid Interface Sci. 59, 568-581 (1977).

J. Display Technol. (1)

J. Laser Micro/Nanoeng. (1)

K. M. Metkus, M. S. Osofsky, N. A. Charipar, A. Piqué, "Laser direct-write for low AC loss high temperature superconductor applications," J. Laser Micro/Nanoeng. 8, 19-23 (2013).

J. Micromech. Microeng. (1)

K. Zhou, J. Heikenfeld, K. A. Dean, E. M. Howard, M. R. Johnson, "A full description of a simple and scalable fabrication process for electrowetting displays," J. Micromech. Microeng. 19, (2009).

J. Micromechanics and Microengineering (1)

T. B. Jones, "An electromechanical interpretation of electrowetting," J. Micromechanics and Microengineering 15, 1184-1187 (2005).

J. Phys.: Condensed Matter (1)

F. Mugele, J.-C. Baret, "Electrowetting: From basics to applications," J. Phys.: Condensed Matter 17, R705-R774 (2005).

J. Phys.: Condensed Matter (1)

F. Mugele, J. Buehrle, "Equilibrium drop surface profiles in electric fields," J. Phys.: Condensed Matter 19, 375112 (2007).

J. SID (1)

J. Heikenfeld, P. Drzaic, J.-S. Yeo, T. Koch, "Review paper: A critical review of the present and future prospects for electronic paper," J. SID 19, (2011).

Langmuir (1)

H. Verheijen, M. Prins, "Reversible electrowetting and trapping of charge: Models and experiments," Langmuir 15, 6166-6620 (1999).

Nature (2)

B. Comiskey, J. D. Albert, H. Yoshizawa, J. Jacobson, "An electrophoretic ink for all-printed reflective electronic displays," Nature 394, 253-255 (1998).

R. Hayes, B. J. Feenstra, "Video-speed electronic paper based on electrowetting," Nature 425, 383-385 (2003).

Nature Commun. (1)

M. Hagedon, S. Yang, A. Russell, J. Heikenfeld, "Bright e-Paper by transport of ink through a white electrofluidic imaging film," Nature Commun. 3, 1173 (2012).

Nature Photon. (1)

J. Heikenfeld, K. Zhou, E. Kreit, B. Raj, S. Yang, B. Sun, A. Milarcik, L. Clapp, R. Schwartz, "Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions," Nature Photon. 3, 292-296 (2009).

Thin Solid Films (1)

M. Dhindsa, S. Kuiper, J. Heikenfeld, "Reliable and low-voltage electrowetting on thin parylene films," Thin Solid Films 519, 3346-3351 (2011).

Other (3)

J. Berthier, Microdrops and Digital Microfluidics (Elsevier, 2013).

P.-G. de Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, 2004).

N. A. Charipar, K. M. Charipar, H. Kim, M. A. Kirleis, R. C. Auyeung, A. T. Smith, S. A. Mathews, A. Piqué, "Laser processing of 2D and 3D metamaterial structures," Proc. SPIE (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.