Abstract

Control of the source-drain contact properties in amorphous InGaZnO semiconductor active layer is relevant since a high series resistance in the source-drain contacts causes degradation of electrical performance, particularly affecting short channel devices. We developed a method to extract the current-voltage characteristics of the injection contact, assuming that contact effects are negligible in long channel devices and by introducing a modified gradual channel approximation (quasi-two-dimensional model), to take into account for short channel effects. The present method allows to extract the parasitic resistance by using devices with only two different channel lengths. Assuming a transmission line scheme for the contact resistance and SCLC transport for the current density flowing along the vertical direction though the IGZO bulk, we have been able to evaluate the variation with ${\rm V}_{{\rm ds}}$ of contact resistance at source and drain electrodes.

© 2014 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription