Abstract

Indocyanine green (ICG) is a cyanine dye that has been used in medical diagnostics based on fluorescence imaging, and in medical therapy based on the photothermal effect. It is important to systematically understand the photothermal effect and fluorescence characteristics of ICG simultaneously. By varying a number of conditions such as laser power density, laser irradiation wavelength, concentration of ICG solution, and exposure time of laser irradiation, the intensity properties of fluorescence and the temperature change induced by the photothermal effect are measured simultaneously using a charge-coupled-device camera and a thermal-imaging camera. The optimal conditions for maximizing the photothermal effect are determined, while maintaining a relatively long lifetime and high efficiency of the fluorescence for fluorescence imaging. When the concentration of ICG is approximately 50 μg/ml and the laser power density exceeds 1.5 W/cm2, the fluorescence lifetime is the longest and the temperature induced by the photothermal effect rapidly increases, exceeding the critical temperature sufficient to damage human cells and tissues. The findings provide useful insight into the realization of effective photothermal therapy, while also specifying the site to be treated and enabling real-time treatment monitoring.

© 2021 Optical Society of Korea

PDF Article

References

  • View by:

  1. R. Anderson, J. Parrish, "Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation," Science 220, 524‒527 (1983)
    [Crossref] [PubMed]
  2. G. Jori, J. D. Spikes, "Photothermal sensitizers: possible use in tumor therapy," J. Photochem. Photobiol. B 6, 93‒101 (1990)
    [Crossref]
  3. L. O. Svaasand, C. J. Gomer, E. Morinelli, "On the physical rationale of laser induced hyperthermia," Lasers Med. Sci. 5, 121‒128 (1990)
    [Crossref]
  4. M. Nikfarjam, V. Muralidharan, C. Christophi, "Mechanisms of focal heat destruction of liver tumors," J. Surg. Res. 127, 208‒223 (2005)
    [Crossref] [PubMed]
  5. E. S. Day, J. G. Morton, J. L. West, "Nanoparticles for thermal cancer therapy," J. Biomech. Eng. 131, (2009)
    [Crossref] [PubMed]
  6. F. A. Merchant, A. Periasamy, Fluorescence Imaging in Microscope Image Processing, Q. Wu, F. A. Merchant, and K. R. Castleman, Eds .
  7. U. Mahmood, C.-H. Tung, J. A. Bogdanov, R. Weissleder, "Near-infrared optical imaging of protease activity for tumor detection," Radiology 213, 866‒870 (1999)
    [Crossref] [PubMed]
  8. H. S. Choi, S. L. Gibbs, J. H. Lee, S. H. Kim, Y. Ashitate, F. Liu, H. Hyun, G. Park, Y. Xie, S. Bae, M. Henary, J. V. Frangioni, "Targeted zwitterionic near-infrared fluorophores for improved optical imaging," Nat. Biotechnol. 31, 148‒153 (2013)
    [Crossref] [PubMed]
  9. S. Gao, D. Chen, Q. Li, J. Ye, H. Jiang, C. Amatore, X. Wang, "Near-infrared fluorescence imaging of cancer cells and tumors through specific biosynthesis of silver nanoclusters," Sci. Rep. 4, 4384 (2014)
    [Crossref] [PubMed]
  10. A. Klein, W. Bäumler, M. Koller, G. Shafirstein, E. A. Kohl, M. Landthaler, P. Babilas, "Indocyanine green-augmented diode laser therapy of telangiectatic leg veins: a randomized controlled proof-of-concept trial," Lasers Surg. Med. 44, 369‒376 (2012)
    [Crossref] [PubMed]
  11. G. Shafirstein, W. Bäumler, L. J. Hennings, E. R. Siegel, R. Friedman, M. A. Moreno, J. Webber, C. Jackson, R. J. Griffin, "Indocyanine green enhanced near-infrared laser treatment of murine mammary carcinoma," Int. J. Cancer 130, 1208‒1215 (2012)
    [Crossref] [PubMed]
  12. V. L. Dzurinko, A. S. Gurwood, J. R. Price, "Intravenous and indocyanine green angiography," J. Am. Optom. Assoc. 75, 743‒755 (2004)
    [Crossref]
  13. C. Shirata, J. Kaneko, Y. Inagaki, T. Kokudo, M. Sato, S. Kiritani, N. Akamatsu, J. Arita, Y. Sakamoto, K. Hasegawa, N. Kokudo, "Near-infrared photothermal/photodynamic therapy with indocyanine green induces apoptosis of hepatocellular carcinoma cells through oxidative stress," Sci. Rep. 7, (2017)
    [Crossref] [PubMed]
  14. R. C. Benson, H. A. Kues, "Fluorescence properties of indocyanine green as related to angiography," Phys. Med. Biol. 23, 159‒163 (1978)
    [Crossref] [PubMed]
  15. T. Desmettre, J. M. Devoisselle, S. Mordon, "Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography," Surv. Ophthalmol. 45, 15‒27 (2000)
    [Crossref]
  16. L. Xiao, X. Chen, X. Yang, J. Sun, J. Geng, "Recent advances in polymer-based photothermal materials for biological applications," ACS Appl. Polym. Mater. 2, 4273‒4288 (2020)
    [Crossref]
  17. B. Liu, C. Li, B. Xing, P. Yang, J. Lin, "Multifunctional UCNPs@PDA-ICG nanocomposites for upconversion imaging and combined photothermal/photodynamic therapy with enhanced antitumor efficacy," J. Mater. Chem. B 4, 4884‒4894 (2016)
    [Crossref] [PubMed]
  18. Q. You, Q. Sun, J. Wang, X. Tan, X. Pang, L. Liu, M. Yu, F. Tan, N. Li, "A single-light triggered and dual-imaging guided multifunctional platform for combined photothermal and photodynamic therapy based on TD-controlled and ICG-loaded CuS@mSiO2," Nanoscale 9, 3784‒3796 (2017)
    [Crossref] [PubMed]
  19. D. Maziukiewicz, B. F. Grześkowiak, E. Coy, S. Jurga, R. Mrówczyński, "NDs@PDA@ICG Conjugates for photothermal therapy of glioblastoma multiforme," Biomimetics 4, 3 (2019)
    [Crossref] [PubMed]
  20. C. W. Song, H. J. Park, C. K. Lee, R. Griffin, "Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment," Int. J. Hyperth. 21, 761‒767 (2005)
    [Crossref] [PubMed]
  21. A. Mukhopadhaya, J. Mendecki, X. Dong, L. Liu, S. Kalnicki, M. Garg, A. Alfieri, C. Guha, "Localized hyperthermia combined with intratumoral dendritic cells induces systemic antitumor immunity," Cancer Res. 67, 7798‒7806 (2007)
    [Crossref] [PubMed]
  22. X. Xie, X. Shao, F. Gao, H. Jin, J. Zhou, L. Du, Y. Zhang, W. Ouyang, X. Wang, L. Zhao, X. Zhang, J. Tang, "Effect of hyperthermia on invasion ability and TGF-β1 expression of breast carcinoma MCF-7 cells," Oncol. Rep. 25, 1573‒1579 (2011)
  23. S. Liu, A. Doughty, C. West, Z. Tang, F. Zhou, W. R. Chen, "Determination of temperature distribution in tissue for interstitial cancer photothermal therapy," Int. J. Hyperth. 34, 756‒763 (2018)
    [Crossref] [PubMed]
  24. A. C. V. Doughty, A. R. Hoover, E. Layton, C. K. Murray, E. W. Howard, W. R. Chen, "Nanomaterial applications in photothermal therapy for cancer," Materials 12, 779 (2019)
    [Crossref] [PubMed]

2020 (1)

L. Xiao, X. Chen, X. Yang, J. Sun, J. Geng, "Recent advances in polymer-based photothermal materials for biological applications," ACS Appl. Polym. Mater. 2, 4273‒4288 (2020)
[Crossref]

2019 (2)

D. Maziukiewicz, B. F. Grześkowiak, E. Coy, S. Jurga, R. Mrówczyński, "NDs@PDA@ICG Conjugates for photothermal therapy of glioblastoma multiforme," Biomimetics 4, 3 (2019)
[Crossref] [PubMed]

A. C. V. Doughty, A. R. Hoover, E. Layton, C. K. Murray, E. W. Howard, W. R. Chen, "Nanomaterial applications in photothermal therapy for cancer," Materials 12, 779 (2019)
[Crossref] [PubMed]

2018 (1)

S. Liu, A. Doughty, C. West, Z. Tang, F. Zhou, W. R. Chen, "Determination of temperature distribution in tissue for interstitial cancer photothermal therapy," Int. J. Hyperth. 34, 756‒763 (2018)
[Crossref] [PubMed]

2017 (2)

Q. You, Q. Sun, J. Wang, X. Tan, X. Pang, L. Liu, M. Yu, F. Tan, N. Li, "A single-light triggered and dual-imaging guided multifunctional platform for combined photothermal and photodynamic therapy based on TD-controlled and ICG-loaded CuS@mSiO2," Nanoscale 9, 3784‒3796 (2017)
[Crossref] [PubMed]

C. Shirata, J. Kaneko, Y. Inagaki, T. Kokudo, M. Sato, S. Kiritani, N. Akamatsu, J. Arita, Y. Sakamoto, K. Hasegawa, N. Kokudo, "Near-infrared photothermal/photodynamic therapy with indocyanine green induces apoptosis of hepatocellular carcinoma cells through oxidative stress," Sci. Rep. 7, (2017)
[Crossref] [PubMed]

2016 (1)

B. Liu, C. Li, B. Xing, P. Yang, J. Lin, "Multifunctional UCNPs@PDA-ICG nanocomposites for upconversion imaging and combined photothermal/photodynamic therapy with enhanced antitumor efficacy," J. Mater. Chem. B 4, 4884‒4894 (2016)
[Crossref] [PubMed]

2014 (1)

S. Gao, D. Chen, Q. Li, J. Ye, H. Jiang, C. Amatore, X. Wang, "Near-infrared fluorescence imaging of cancer cells and tumors through specific biosynthesis of silver nanoclusters," Sci. Rep. 4, 4384 (2014)
[Crossref] [PubMed]

2013 (1)

H. S. Choi, S. L. Gibbs, J. H. Lee, S. H. Kim, Y. Ashitate, F. Liu, H. Hyun, G. Park, Y. Xie, S. Bae, M. Henary, J. V. Frangioni, "Targeted zwitterionic near-infrared fluorophores for improved optical imaging," Nat. Biotechnol. 31, 148‒153 (2013)
[Crossref] [PubMed]

2012 (2)

A. Klein, W. Bäumler, M. Koller, G. Shafirstein, E. A. Kohl, M. Landthaler, P. Babilas, "Indocyanine green-augmented diode laser therapy of telangiectatic leg veins: a randomized controlled proof-of-concept trial," Lasers Surg. Med. 44, 369‒376 (2012)
[Crossref] [PubMed]

G. Shafirstein, W. Bäumler, L. J. Hennings, E. R. Siegel, R. Friedman, M. A. Moreno, J. Webber, C. Jackson, R. J. Griffin, "Indocyanine green enhanced near-infrared laser treatment of murine mammary carcinoma," Int. J. Cancer 130, 1208‒1215 (2012)
[Crossref] [PubMed]

2011 (1)

X. Xie, X. Shao, F. Gao, H. Jin, J. Zhou, L. Du, Y. Zhang, W. Ouyang, X. Wang, L. Zhao, X. Zhang, J. Tang, "Effect of hyperthermia on invasion ability and TGF-β1 expression of breast carcinoma MCF-7 cells," Oncol. Rep. 25, 1573‒1579 (2011)

2009 (1)

E. S. Day, J. G. Morton, J. L. West, "Nanoparticles for thermal cancer therapy," J. Biomech. Eng. 131, (2009)
[Crossref] [PubMed]

2007 (1)

A. Mukhopadhaya, J. Mendecki, X. Dong, L. Liu, S. Kalnicki, M. Garg, A. Alfieri, C. Guha, "Localized hyperthermia combined with intratumoral dendritic cells induces systemic antitumor immunity," Cancer Res. 67, 7798‒7806 (2007)
[Crossref] [PubMed]

2005 (2)

C. W. Song, H. J. Park, C. K. Lee, R. Griffin, "Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment," Int. J. Hyperth. 21, 761‒767 (2005)
[Crossref] [PubMed]

M. Nikfarjam, V. Muralidharan, C. Christophi, "Mechanisms of focal heat destruction of liver tumors," J. Surg. Res. 127, 208‒223 (2005)
[Crossref] [PubMed]

2004 (1)

V. L. Dzurinko, A. S. Gurwood, J. R. Price, "Intravenous and indocyanine green angiography," J. Am. Optom. Assoc. 75, 743‒755 (2004)
[Crossref]

2000 (1)

T. Desmettre, J. M. Devoisselle, S. Mordon, "Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography," Surv. Ophthalmol. 45, 15‒27 (2000)
[Crossref]

1999 (1)

U. Mahmood, C.-H. Tung, J. A. Bogdanov, R. Weissleder, "Near-infrared optical imaging of protease activity for tumor detection," Radiology 213, 866‒870 (1999)
[Crossref] [PubMed]

1990 (2)

G. Jori, J. D. Spikes, "Photothermal sensitizers: possible use in tumor therapy," J. Photochem. Photobiol. B 6, 93‒101 (1990)
[Crossref]

L. O. Svaasand, C. J. Gomer, E. Morinelli, "On the physical rationale of laser induced hyperthermia," Lasers Med. Sci. 5, 121‒128 (1990)
[Crossref]

1983 (1)

R. Anderson, J. Parrish, "Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation," Science 220, 524‒527 (1983)
[Crossref] [PubMed]

1978 (1)

R. C. Benson, H. A. Kues, "Fluorescence properties of indocyanine green as related to angiography," Phys. Med. Biol. 23, 159‒163 (1978)
[Crossref] [PubMed]

Akamatsu, N.

C. Shirata, J. Kaneko, Y. Inagaki, T. Kokudo, M. Sato, S. Kiritani, N. Akamatsu, J. Arita, Y. Sakamoto, K. Hasegawa, N. Kokudo, "Near-infrared photothermal/photodynamic therapy with indocyanine green induces apoptosis of hepatocellular carcinoma cells through oxidative stress," Sci. Rep. 7, (2017)
[Crossref] [PubMed]

Alfieri, A.

A. Mukhopadhaya, J. Mendecki, X. Dong, L. Liu, S. Kalnicki, M. Garg, A. Alfieri, C. Guha, "Localized hyperthermia combined with intratumoral dendritic cells induces systemic antitumor immunity," Cancer Res. 67, 7798‒7806 (2007)
[Crossref] [PubMed]

Amatore, C.

S. Gao, D. Chen, Q. Li, J. Ye, H. Jiang, C. Amatore, X. Wang, "Near-infrared fluorescence imaging of cancer cells and tumors through specific biosynthesis of silver nanoclusters," Sci. Rep. 4, 4384 (2014)
[Crossref] [PubMed]

Anderson, R.

R. Anderson, J. Parrish, "Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation," Science 220, 524‒527 (1983)
[Crossref] [PubMed]

Arita, J.

C. Shirata, J. Kaneko, Y. Inagaki, T. Kokudo, M. Sato, S. Kiritani, N. Akamatsu, J. Arita, Y. Sakamoto, K. Hasegawa, N. Kokudo, "Near-infrared photothermal/photodynamic therapy with indocyanine green induces apoptosis of hepatocellular carcinoma cells through oxidative stress," Sci. Rep. 7, (2017)
[Crossref] [PubMed]

Ashitate, Y.

H. S. Choi, S. L. Gibbs, J. H. Lee, S. H. Kim, Y. Ashitate, F. Liu, H. Hyun, G. Park, Y. Xie, S. Bae, M. Henary, J. V. Frangioni, "Targeted zwitterionic near-infrared fluorophores for improved optical imaging," Nat. Biotechnol. 31, 148‒153 (2013)
[Crossref] [PubMed]

Babilas, P.

A. Klein, W. Bäumler, M. Koller, G. Shafirstein, E. A. Kohl, M. Landthaler, P. Babilas, "Indocyanine green-augmented diode laser therapy of telangiectatic leg veins: a randomized controlled proof-of-concept trial," Lasers Surg. Med. 44, 369‒376 (2012)
[Crossref] [PubMed]

Bae, S.

H. S. Choi, S. L. Gibbs, J. H. Lee, S. H. Kim, Y. Ashitate, F. Liu, H. Hyun, G. Park, Y. Xie, S. Bae, M. Henary, J. V. Frangioni, "Targeted zwitterionic near-infrared fluorophores for improved optical imaging," Nat. Biotechnol. 31, 148‒153 (2013)
[Crossref] [PubMed]

Bäumler, W.

A. Klein, W. Bäumler, M. Koller, G. Shafirstein, E. A. Kohl, M. Landthaler, P. Babilas, "Indocyanine green-augmented diode laser therapy of telangiectatic leg veins: a randomized controlled proof-of-concept trial," Lasers Surg. Med. 44, 369‒376 (2012)
[Crossref] [PubMed]

G. Shafirstein, W. Bäumler, L. J. Hennings, E. R. Siegel, R. Friedman, M. A. Moreno, J. Webber, C. Jackson, R. J. Griffin, "Indocyanine green enhanced near-infrared laser treatment of murine mammary carcinoma," Int. J. Cancer 130, 1208‒1215 (2012)
[Crossref] [PubMed]

Benson, R. C.

R. C. Benson, H. A. Kues, "Fluorescence properties of indocyanine green as related to angiography," Phys. Med. Biol. 23, 159‒163 (1978)
[Crossref] [PubMed]

Bogdanov, J. A.

U. Mahmood, C.-H. Tung, J. A. Bogdanov, R. Weissleder, "Near-infrared optical imaging of protease activity for tumor detection," Radiology 213, 866‒870 (1999)
[Crossref] [PubMed]

Chen, D.

S. Gao, D. Chen, Q. Li, J. Ye, H. Jiang, C. Amatore, X. Wang, "Near-infrared fluorescence imaging of cancer cells and tumors through specific biosynthesis of silver nanoclusters," Sci. Rep. 4, 4384 (2014)
[Crossref] [PubMed]

Chen, W. R.

A. C. V. Doughty, A. R. Hoover, E. Layton, C. K. Murray, E. W. Howard, W. R. Chen, "Nanomaterial applications in photothermal therapy for cancer," Materials 12, 779 (2019)
[Crossref] [PubMed]

S. Liu, A. Doughty, C. West, Z. Tang, F. Zhou, W. R. Chen, "Determination of temperature distribution in tissue for interstitial cancer photothermal therapy," Int. J. Hyperth. 34, 756‒763 (2018)
[Crossref] [PubMed]

Chen, X.

L. Xiao, X. Chen, X. Yang, J. Sun, J. Geng, "Recent advances in polymer-based photothermal materials for biological applications," ACS Appl. Polym. Mater. 2, 4273‒4288 (2020)
[Crossref]

Choi, H. S.

H. S. Choi, S. L. Gibbs, J. H. Lee, S. H. Kim, Y. Ashitate, F. Liu, H. Hyun, G. Park, Y. Xie, S. Bae, M. Henary, J. V. Frangioni, "Targeted zwitterionic near-infrared fluorophores for improved optical imaging," Nat. Biotechnol. 31, 148‒153 (2013)
[Crossref] [PubMed]

Christophi, C.

M. Nikfarjam, V. Muralidharan, C. Christophi, "Mechanisms of focal heat destruction of liver tumors," J. Surg. Res. 127, 208‒223 (2005)
[Crossref] [PubMed]

Coy, E.

D. Maziukiewicz, B. F. Grześkowiak, E. Coy, S. Jurga, R. Mrówczyński, "NDs@PDA@ICG Conjugates for photothermal therapy of glioblastoma multiforme," Biomimetics 4, 3 (2019)
[Crossref] [PubMed]

Day, E. S.

E. S. Day, J. G. Morton, J. L. West, "Nanoparticles for thermal cancer therapy," J. Biomech. Eng. 131, (2009)
[Crossref] [PubMed]

Desmettre, T.

T. Desmettre, J. M. Devoisselle, S. Mordon, "Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography," Surv. Ophthalmol. 45, 15‒27 (2000)
[Crossref]

Devoisselle, J. M.

T. Desmettre, J. M. Devoisselle, S. Mordon, "Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography," Surv. Ophthalmol. 45, 15‒27 (2000)
[Crossref]

Dong, X.

A. Mukhopadhaya, J. Mendecki, X. Dong, L. Liu, S. Kalnicki, M. Garg, A. Alfieri, C. Guha, "Localized hyperthermia combined with intratumoral dendritic cells induces systemic antitumor immunity," Cancer Res. 67, 7798‒7806 (2007)
[Crossref] [PubMed]

Doughty, A.

S. Liu, A. Doughty, C. West, Z. Tang, F. Zhou, W. R. Chen, "Determination of temperature distribution in tissue for interstitial cancer photothermal therapy," Int. J. Hyperth. 34, 756‒763 (2018)
[Crossref] [PubMed]

Doughty, A. C. V.

A. C. V. Doughty, A. R. Hoover, E. Layton, C. K. Murray, E. W. Howard, W. R. Chen, "Nanomaterial applications in photothermal therapy for cancer," Materials 12, 779 (2019)
[Crossref] [PubMed]

Du, L.

X. Xie, X. Shao, F. Gao, H. Jin, J. Zhou, L. Du, Y. Zhang, W. Ouyang, X. Wang, L. Zhao, X. Zhang, J. Tang, "Effect of hyperthermia on invasion ability and TGF-β1 expression of breast carcinoma MCF-7 cells," Oncol. Rep. 25, 1573‒1579 (2011)

Dzurinko, V. L.

V. L. Dzurinko, A. S. Gurwood, J. R. Price, "Intravenous and indocyanine green angiography," J. Am. Optom. Assoc. 75, 743‒755 (2004)
[Crossref]

Frangioni, J. V.

H. S. Choi, S. L. Gibbs, J. H. Lee, S. H. Kim, Y. Ashitate, F. Liu, H. Hyun, G. Park, Y. Xie, S. Bae, M. Henary, J. V. Frangioni, "Targeted zwitterionic near-infrared fluorophores for improved optical imaging," Nat. Biotechnol. 31, 148‒153 (2013)
[Crossref] [PubMed]

Friedman, R.

G. Shafirstein, W. Bäumler, L. J. Hennings, E. R. Siegel, R. Friedman, M. A. Moreno, J. Webber, C. Jackson, R. J. Griffin, "Indocyanine green enhanced near-infrared laser treatment of murine mammary carcinoma," Int. J. Cancer 130, 1208‒1215 (2012)
[Crossref] [PubMed]

Gao, F.

X. Xie, X. Shao, F. Gao, H. Jin, J. Zhou, L. Du, Y. Zhang, W. Ouyang, X. Wang, L. Zhao, X. Zhang, J. Tang, "Effect of hyperthermia on invasion ability and TGF-β1 expression of breast carcinoma MCF-7 cells," Oncol. Rep. 25, 1573‒1579 (2011)

Gao, S.

S. Gao, D. Chen, Q. Li, J. Ye, H. Jiang, C. Amatore, X. Wang, "Near-infrared fluorescence imaging of cancer cells and tumors through specific biosynthesis of silver nanoclusters," Sci. Rep. 4, 4384 (2014)
[Crossref] [PubMed]

Garg, M.

A. Mukhopadhaya, J. Mendecki, X. Dong, L. Liu, S. Kalnicki, M. Garg, A. Alfieri, C. Guha, "Localized hyperthermia combined with intratumoral dendritic cells induces systemic antitumor immunity," Cancer Res. 67, 7798‒7806 (2007)
[Crossref] [PubMed]

Geng, J.

L. Xiao, X. Chen, X. Yang, J. Sun, J. Geng, "Recent advances in polymer-based photothermal materials for biological applications," ACS Appl. Polym. Mater. 2, 4273‒4288 (2020)
[Crossref]

Gibbs, S. L.

H. S. Choi, S. L. Gibbs, J. H. Lee, S. H. Kim, Y. Ashitate, F. Liu, H. Hyun, G. Park, Y. Xie, S. Bae, M. Henary, J. V. Frangioni, "Targeted zwitterionic near-infrared fluorophores for improved optical imaging," Nat. Biotechnol. 31, 148‒153 (2013)
[Crossref] [PubMed]

Gomer, C. J.

L. O. Svaasand, C. J. Gomer, E. Morinelli, "On the physical rationale of laser induced hyperthermia," Lasers Med. Sci. 5, 121‒128 (1990)
[Crossref]

Griffin, R.

C. W. Song, H. J. Park, C. K. Lee, R. Griffin, "Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment," Int. J. Hyperth. 21, 761‒767 (2005)
[Crossref] [PubMed]

Griffin, R. J.

G. Shafirstein, W. Bäumler, L. J. Hennings, E. R. Siegel, R. Friedman, M. A. Moreno, J. Webber, C. Jackson, R. J. Griffin, "Indocyanine green enhanced near-infrared laser treatment of murine mammary carcinoma," Int. J. Cancer 130, 1208‒1215 (2012)
[Crossref] [PubMed]

Grzeskowiak, B. F.

D. Maziukiewicz, B. F. Grześkowiak, E. Coy, S. Jurga, R. Mrówczyński, "NDs@PDA@ICG Conjugates for photothermal therapy of glioblastoma multiforme," Biomimetics 4, 3 (2019)
[Crossref] [PubMed]

Guha, C.

A. Mukhopadhaya, J. Mendecki, X. Dong, L. Liu, S. Kalnicki, M. Garg, A. Alfieri, C. Guha, "Localized hyperthermia combined with intratumoral dendritic cells induces systemic antitumor immunity," Cancer Res. 67, 7798‒7806 (2007)
[Crossref] [PubMed]

Gurwood, A. S.

V. L. Dzurinko, A. S. Gurwood, J. R. Price, "Intravenous and indocyanine green angiography," J. Am. Optom. Assoc. 75, 743‒755 (2004)
[Crossref]

Hasegawa, K.

C. Shirata, J. Kaneko, Y. Inagaki, T. Kokudo, M. Sato, S. Kiritani, N. Akamatsu, J. Arita, Y. Sakamoto, K. Hasegawa, N. Kokudo, "Near-infrared photothermal/photodynamic therapy with indocyanine green induces apoptosis of hepatocellular carcinoma cells through oxidative stress," Sci. Rep. 7, (2017)
[Crossref] [PubMed]

Henary, M.

H. S. Choi, S. L. Gibbs, J. H. Lee, S. H. Kim, Y. Ashitate, F. Liu, H. Hyun, G. Park, Y. Xie, S. Bae, M. Henary, J. V. Frangioni, "Targeted zwitterionic near-infrared fluorophores for improved optical imaging," Nat. Biotechnol. 31, 148‒153 (2013)
[Crossref] [PubMed]

Hennings, L. J.

G. Shafirstein, W. Bäumler, L. J. Hennings, E. R. Siegel, R. Friedman, M. A. Moreno, J. Webber, C. Jackson, R. J. Griffin, "Indocyanine green enhanced near-infrared laser treatment of murine mammary carcinoma," Int. J. Cancer 130, 1208‒1215 (2012)
[Crossref] [PubMed]

Hoover, A. R.

A. C. V. Doughty, A. R. Hoover, E. Layton, C. K. Murray, E. W. Howard, W. R. Chen, "Nanomaterial applications in photothermal therapy for cancer," Materials 12, 779 (2019)
[Crossref] [PubMed]

Howard, E. W.

A. C. V. Doughty, A. R. Hoover, E. Layton, C. K. Murray, E. W. Howard, W. R. Chen, "Nanomaterial applications in photothermal therapy for cancer," Materials 12, 779 (2019)
[Crossref] [PubMed]

Hyun, H.

H. S. Choi, S. L. Gibbs, J. H. Lee, S. H. Kim, Y. Ashitate, F. Liu, H. Hyun, G. Park, Y. Xie, S. Bae, M. Henary, J. V. Frangioni, "Targeted zwitterionic near-infrared fluorophores for improved optical imaging," Nat. Biotechnol. 31, 148‒153 (2013)
[Crossref] [PubMed]

Inagaki, Y.

C. Shirata, J. Kaneko, Y. Inagaki, T. Kokudo, M. Sato, S. Kiritani, N. Akamatsu, J. Arita, Y. Sakamoto, K. Hasegawa, N. Kokudo, "Near-infrared photothermal/photodynamic therapy with indocyanine green induces apoptosis of hepatocellular carcinoma cells through oxidative stress," Sci. Rep. 7, (2017)
[Crossref] [PubMed]

Jackson, C.

G. Shafirstein, W. Bäumler, L. J. Hennings, E. R. Siegel, R. Friedman, M. A. Moreno, J. Webber, C. Jackson, R. J. Griffin, "Indocyanine green enhanced near-infrared laser treatment of murine mammary carcinoma," Int. J. Cancer 130, 1208‒1215 (2012)
[Crossref] [PubMed]

Jiang, H.

S. Gao, D. Chen, Q. Li, J. Ye, H. Jiang, C. Amatore, X. Wang, "Near-infrared fluorescence imaging of cancer cells and tumors through specific biosynthesis of silver nanoclusters," Sci. Rep. 4, 4384 (2014)
[Crossref] [PubMed]

Jin, H.

X. Xie, X. Shao, F. Gao, H. Jin, J. Zhou, L. Du, Y. Zhang, W. Ouyang, X. Wang, L. Zhao, X. Zhang, J. Tang, "Effect of hyperthermia on invasion ability and TGF-β1 expression of breast carcinoma MCF-7 cells," Oncol. Rep. 25, 1573‒1579 (2011)

Jori, G.

G. Jori, J. D. Spikes, "Photothermal sensitizers: possible use in tumor therapy," J. Photochem. Photobiol. B 6, 93‒101 (1990)
[Crossref]

Jurga, S.

D. Maziukiewicz, B. F. Grześkowiak, E. Coy, S. Jurga, R. Mrówczyński, "NDs@PDA@ICG Conjugates for photothermal therapy of glioblastoma multiforme," Biomimetics 4, 3 (2019)
[Crossref] [PubMed]

Kalnicki, S.

A. Mukhopadhaya, J. Mendecki, X. Dong, L. Liu, S. Kalnicki, M. Garg, A. Alfieri, C. Guha, "Localized hyperthermia combined with intratumoral dendritic cells induces systemic antitumor immunity," Cancer Res. 67, 7798‒7806 (2007)
[Crossref] [PubMed]

Kaneko, J.

C. Shirata, J. Kaneko, Y. Inagaki, T. Kokudo, M. Sato, S. Kiritani, N. Akamatsu, J. Arita, Y. Sakamoto, K. Hasegawa, N. Kokudo, "Near-infrared photothermal/photodynamic therapy with indocyanine green induces apoptosis of hepatocellular carcinoma cells through oxidative stress," Sci. Rep. 7, (2017)
[Crossref] [PubMed]

Kim, S. H.

H. S. Choi, S. L. Gibbs, J. H. Lee, S. H. Kim, Y. Ashitate, F. Liu, H. Hyun, G. Park, Y. Xie, S. Bae, M. Henary, J. V. Frangioni, "Targeted zwitterionic near-infrared fluorophores for improved optical imaging," Nat. Biotechnol. 31, 148‒153 (2013)
[Crossref] [PubMed]

Kiritani, S.

C. Shirata, J. Kaneko, Y. Inagaki, T. Kokudo, M. Sato, S. Kiritani, N. Akamatsu, J. Arita, Y. Sakamoto, K. Hasegawa, N. Kokudo, "Near-infrared photothermal/photodynamic therapy with indocyanine green induces apoptosis of hepatocellular carcinoma cells through oxidative stress," Sci. Rep. 7, (2017)
[Crossref] [PubMed]

Klein, A.

A. Klein, W. Bäumler, M. Koller, G. Shafirstein, E. A. Kohl, M. Landthaler, P. Babilas, "Indocyanine green-augmented diode laser therapy of telangiectatic leg veins: a randomized controlled proof-of-concept trial," Lasers Surg. Med. 44, 369‒376 (2012)
[Crossref] [PubMed]

Kohl, E. A.

A. Klein, W. Bäumler, M. Koller, G. Shafirstein, E. A. Kohl, M. Landthaler, P. Babilas, "Indocyanine green-augmented diode laser therapy of telangiectatic leg veins: a randomized controlled proof-of-concept trial," Lasers Surg. Med. 44, 369‒376 (2012)
[Crossref] [PubMed]

Kokudo, N.

C. Shirata, J. Kaneko, Y. Inagaki, T. Kokudo, M. Sato, S. Kiritani, N. Akamatsu, J. Arita, Y. Sakamoto, K. Hasegawa, N. Kokudo, "Near-infrared photothermal/photodynamic therapy with indocyanine green induces apoptosis of hepatocellular carcinoma cells through oxidative stress," Sci. Rep. 7, (2017)
[Crossref] [PubMed]

Kokudo, T.

C. Shirata, J. Kaneko, Y. Inagaki, T. Kokudo, M. Sato, S. Kiritani, N. Akamatsu, J. Arita, Y. Sakamoto, K. Hasegawa, N. Kokudo, "Near-infrared photothermal/photodynamic therapy with indocyanine green induces apoptosis of hepatocellular carcinoma cells through oxidative stress," Sci. Rep. 7, (2017)
[Crossref] [PubMed]

Koller, M.

A. Klein, W. Bäumler, M. Koller, G. Shafirstein, E. A. Kohl, M. Landthaler, P. Babilas, "Indocyanine green-augmented diode laser therapy of telangiectatic leg veins: a randomized controlled proof-of-concept trial," Lasers Surg. Med. 44, 369‒376 (2012)
[Crossref] [PubMed]

Kues, H. A.

R. C. Benson, H. A. Kues, "Fluorescence properties of indocyanine green as related to angiography," Phys. Med. Biol. 23, 159‒163 (1978)
[Crossref] [PubMed]

Landthaler, M.

A. Klein, W. Bäumler, M. Koller, G. Shafirstein, E. A. Kohl, M. Landthaler, P. Babilas, "Indocyanine green-augmented diode laser therapy of telangiectatic leg veins: a randomized controlled proof-of-concept trial," Lasers Surg. Med. 44, 369‒376 (2012)
[Crossref] [PubMed]

Layton, E.

A. C. V. Doughty, A. R. Hoover, E. Layton, C. K. Murray, E. W. Howard, W. R. Chen, "Nanomaterial applications in photothermal therapy for cancer," Materials 12, 779 (2019)
[Crossref] [PubMed]

Lee, C. K.

C. W. Song, H. J. Park, C. K. Lee, R. Griffin, "Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment," Int. J. Hyperth. 21, 761‒767 (2005)
[Crossref] [PubMed]

Lee, J. H.

H. S. Choi, S. L. Gibbs, J. H. Lee, S. H. Kim, Y. Ashitate, F. Liu, H. Hyun, G. Park, Y. Xie, S. Bae, M. Henary, J. V. Frangioni, "Targeted zwitterionic near-infrared fluorophores for improved optical imaging," Nat. Biotechnol. 31, 148‒153 (2013)
[Crossref] [PubMed]

Li, C.

B. Liu, C. Li, B. Xing, P. Yang, J. Lin, "Multifunctional UCNPs@PDA-ICG nanocomposites for upconversion imaging and combined photothermal/photodynamic therapy with enhanced antitumor efficacy," J. Mater. Chem. B 4, 4884‒4894 (2016)
[Crossref] [PubMed]

Li, N.

Q. You, Q. Sun, J. Wang, X. Tan, X. Pang, L. Liu, M. Yu, F. Tan, N. Li, "A single-light triggered and dual-imaging guided multifunctional platform for combined photothermal and photodynamic therapy based on TD-controlled and ICG-loaded CuS@mSiO2," Nanoscale 9, 3784‒3796 (2017)
[Crossref] [PubMed]

Li, Q.

S. Gao, D. Chen, Q. Li, J. Ye, H. Jiang, C. Amatore, X. Wang, "Near-infrared fluorescence imaging of cancer cells and tumors through specific biosynthesis of silver nanoclusters," Sci. Rep. 4, 4384 (2014)
[Crossref] [PubMed]

Lin, J.

B. Liu, C. Li, B. Xing, P. Yang, J. Lin, "Multifunctional UCNPs@PDA-ICG nanocomposites for upconversion imaging and combined photothermal/photodynamic therapy with enhanced antitumor efficacy," J. Mater. Chem. B 4, 4884‒4894 (2016)
[Crossref] [PubMed]

Liu, B.

B. Liu, C. Li, B. Xing, P. Yang, J. Lin, "Multifunctional UCNPs@PDA-ICG nanocomposites for upconversion imaging and combined photothermal/photodynamic therapy with enhanced antitumor efficacy," J. Mater. Chem. B 4, 4884‒4894 (2016)
[Crossref] [PubMed]

Liu, F.

H. S. Choi, S. L. Gibbs, J. H. Lee, S. H. Kim, Y. Ashitate, F. Liu, H. Hyun, G. Park, Y. Xie, S. Bae, M. Henary, J. V. Frangioni, "Targeted zwitterionic near-infrared fluorophores for improved optical imaging," Nat. Biotechnol. 31, 148‒153 (2013)
[Crossref] [PubMed]

Liu, L.

Q. You, Q. Sun, J. Wang, X. Tan, X. Pang, L. Liu, M. Yu, F. Tan, N. Li, "A single-light triggered and dual-imaging guided multifunctional platform for combined photothermal and photodynamic therapy based on TD-controlled and ICG-loaded CuS@mSiO2," Nanoscale 9, 3784‒3796 (2017)
[Crossref] [PubMed]

A. Mukhopadhaya, J. Mendecki, X. Dong, L. Liu, S. Kalnicki, M. Garg, A. Alfieri, C. Guha, "Localized hyperthermia combined with intratumoral dendritic cells induces systemic antitumor immunity," Cancer Res. 67, 7798‒7806 (2007)
[Crossref] [PubMed]

Liu, S.

S. Liu, A. Doughty, C. West, Z. Tang, F. Zhou, W. R. Chen, "Determination of temperature distribution in tissue for interstitial cancer photothermal therapy," Int. J. Hyperth. 34, 756‒763 (2018)
[Crossref] [PubMed]

Mahmood, U.

U. Mahmood, C.-H. Tung, J. A. Bogdanov, R. Weissleder, "Near-infrared optical imaging of protease activity for tumor detection," Radiology 213, 866‒870 (1999)
[Crossref] [PubMed]

Maziukiewicz, D.

D. Maziukiewicz, B. F. Grześkowiak, E. Coy, S. Jurga, R. Mrówczyński, "NDs@PDA@ICG Conjugates for photothermal therapy of glioblastoma multiforme," Biomimetics 4, 3 (2019)
[Crossref] [PubMed]

Mendecki, J.

A. Mukhopadhaya, J. Mendecki, X. Dong, L. Liu, S. Kalnicki, M. Garg, A. Alfieri, C. Guha, "Localized hyperthermia combined with intratumoral dendritic cells induces systemic antitumor immunity," Cancer Res. 67, 7798‒7806 (2007)
[Crossref] [PubMed]

Merchant, F. A.

F. A. Merchant, A. Periasamy, Fluorescence Imaging in Microscope Image Processing, Q. Wu, F. A. Merchant, and K. R. Castleman, Eds .

Mordon, S.

T. Desmettre, J. M. Devoisselle, S. Mordon, "Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography," Surv. Ophthalmol. 45, 15‒27 (2000)
[Crossref]

Moreno, M. A.

G. Shafirstein, W. Bäumler, L. J. Hennings, E. R. Siegel, R. Friedman, M. A. Moreno, J. Webber, C. Jackson, R. J. Griffin, "Indocyanine green enhanced near-infrared laser treatment of murine mammary carcinoma," Int. J. Cancer 130, 1208‒1215 (2012)
[Crossref] [PubMed]

Morinelli, E.

L. O. Svaasand, C. J. Gomer, E. Morinelli, "On the physical rationale of laser induced hyperthermia," Lasers Med. Sci. 5, 121‒128 (1990)
[Crossref]

Morton, J. G.

E. S. Day, J. G. Morton, J. L. West, "Nanoparticles for thermal cancer therapy," J. Biomech. Eng. 131, (2009)
[Crossref] [PubMed]

Mrówczynski, R.

D. Maziukiewicz, B. F. Grześkowiak, E. Coy, S. Jurga, R. Mrówczyński, "NDs@PDA@ICG Conjugates for photothermal therapy of glioblastoma multiforme," Biomimetics 4, 3 (2019)
[Crossref] [PubMed]

Mukhopadhaya, A.

A. Mukhopadhaya, J. Mendecki, X. Dong, L. Liu, S. Kalnicki, M. Garg, A. Alfieri, C. Guha, "Localized hyperthermia combined with intratumoral dendritic cells induces systemic antitumor immunity," Cancer Res. 67, 7798‒7806 (2007)
[Crossref] [PubMed]

Muralidharan, V.

M. Nikfarjam, V. Muralidharan, C. Christophi, "Mechanisms of focal heat destruction of liver tumors," J. Surg. Res. 127, 208‒223 (2005)
[Crossref] [PubMed]

Murray, C. K.

A. C. V. Doughty, A. R. Hoover, E. Layton, C. K. Murray, E. W. Howard, W. R. Chen, "Nanomaterial applications in photothermal therapy for cancer," Materials 12, 779 (2019)
[Crossref] [PubMed]

Nikfarjam, M.

M. Nikfarjam, V. Muralidharan, C. Christophi, "Mechanisms of focal heat destruction of liver tumors," J. Surg. Res. 127, 208‒223 (2005)
[Crossref] [PubMed]

Ouyang, W.

X. Xie, X. Shao, F. Gao, H. Jin, J. Zhou, L. Du, Y. Zhang, W. Ouyang, X. Wang, L. Zhao, X. Zhang, J. Tang, "Effect of hyperthermia on invasion ability and TGF-β1 expression of breast carcinoma MCF-7 cells," Oncol. Rep. 25, 1573‒1579 (2011)

Pang, X.

Q. You, Q. Sun, J. Wang, X. Tan, X. Pang, L. Liu, M. Yu, F. Tan, N. Li, "A single-light triggered and dual-imaging guided multifunctional platform for combined photothermal and photodynamic therapy based on TD-controlled and ICG-loaded CuS@mSiO2," Nanoscale 9, 3784‒3796 (2017)
[Crossref] [PubMed]

Park, G.

H. S. Choi, S. L. Gibbs, J. H. Lee, S. H. Kim, Y. Ashitate, F. Liu, H. Hyun, G. Park, Y. Xie, S. Bae, M. Henary, J. V. Frangioni, "Targeted zwitterionic near-infrared fluorophores for improved optical imaging," Nat. Biotechnol. 31, 148‒153 (2013)
[Crossref] [PubMed]

Park, H. J.

C. W. Song, H. J. Park, C. K. Lee, R. Griffin, "Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment," Int. J. Hyperth. 21, 761‒767 (2005)
[Crossref] [PubMed]

Parrish, J.

R. Anderson, J. Parrish, "Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation," Science 220, 524‒527 (1983)
[Crossref] [PubMed]

Periasamy, A.

F. A. Merchant, A. Periasamy, Fluorescence Imaging in Microscope Image Processing, Q. Wu, F. A. Merchant, and K. R. Castleman, Eds .

Price, J. R.

V. L. Dzurinko, A. S. Gurwood, J. R. Price, "Intravenous and indocyanine green angiography," J. Am. Optom. Assoc. 75, 743‒755 (2004)
[Crossref]

Sakamoto, Y.

C. Shirata, J. Kaneko, Y. Inagaki, T. Kokudo, M. Sato, S. Kiritani, N. Akamatsu, J. Arita, Y. Sakamoto, K. Hasegawa, N. Kokudo, "Near-infrared photothermal/photodynamic therapy with indocyanine green induces apoptosis of hepatocellular carcinoma cells through oxidative stress," Sci. Rep. 7, (2017)
[Crossref] [PubMed]

Sato, M.

C. Shirata, J. Kaneko, Y. Inagaki, T. Kokudo, M. Sato, S. Kiritani, N. Akamatsu, J. Arita, Y. Sakamoto, K. Hasegawa, N. Kokudo, "Near-infrared photothermal/photodynamic therapy with indocyanine green induces apoptosis of hepatocellular carcinoma cells through oxidative stress," Sci. Rep. 7, (2017)
[Crossref] [PubMed]

Shafirstein, G.

G. Shafirstein, W. Bäumler, L. J. Hennings, E. R. Siegel, R. Friedman, M. A. Moreno, J. Webber, C. Jackson, R. J. Griffin, "Indocyanine green enhanced near-infrared laser treatment of murine mammary carcinoma," Int. J. Cancer 130, 1208‒1215 (2012)
[Crossref] [PubMed]

A. Klein, W. Bäumler, M. Koller, G. Shafirstein, E. A. Kohl, M. Landthaler, P. Babilas, "Indocyanine green-augmented diode laser therapy of telangiectatic leg veins: a randomized controlled proof-of-concept trial," Lasers Surg. Med. 44, 369‒376 (2012)
[Crossref] [PubMed]

Shao, X.

X. Xie, X. Shao, F. Gao, H. Jin, J. Zhou, L. Du, Y. Zhang, W. Ouyang, X. Wang, L. Zhao, X. Zhang, J. Tang, "Effect of hyperthermia on invasion ability and TGF-β1 expression of breast carcinoma MCF-7 cells," Oncol. Rep. 25, 1573‒1579 (2011)

Shirata, C.

C. Shirata, J. Kaneko, Y. Inagaki, T. Kokudo, M. Sato, S. Kiritani, N. Akamatsu, J. Arita, Y. Sakamoto, K. Hasegawa, N. Kokudo, "Near-infrared photothermal/photodynamic therapy with indocyanine green induces apoptosis of hepatocellular carcinoma cells through oxidative stress," Sci. Rep. 7, (2017)
[Crossref] [PubMed]

Siegel, E. R.

G. Shafirstein, W. Bäumler, L. J. Hennings, E. R. Siegel, R. Friedman, M. A. Moreno, J. Webber, C. Jackson, R. J. Griffin, "Indocyanine green enhanced near-infrared laser treatment of murine mammary carcinoma," Int. J. Cancer 130, 1208‒1215 (2012)
[Crossref] [PubMed]

Song, C. W.

C. W. Song, H. J. Park, C. K. Lee, R. Griffin, "Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment," Int. J. Hyperth. 21, 761‒767 (2005)
[Crossref] [PubMed]

Spikes, J. D.

G. Jori, J. D. Spikes, "Photothermal sensitizers: possible use in tumor therapy," J. Photochem. Photobiol. B 6, 93‒101 (1990)
[Crossref]

Sun, J.

L. Xiao, X. Chen, X. Yang, J. Sun, J. Geng, "Recent advances in polymer-based photothermal materials for biological applications," ACS Appl. Polym. Mater. 2, 4273‒4288 (2020)
[Crossref]

Sun, Q.

Q. You, Q. Sun, J. Wang, X. Tan, X. Pang, L. Liu, M. Yu, F. Tan, N. Li, "A single-light triggered and dual-imaging guided multifunctional platform for combined photothermal and photodynamic therapy based on TD-controlled and ICG-loaded CuS@mSiO2," Nanoscale 9, 3784‒3796 (2017)
[Crossref] [PubMed]

Svaasand, L. O.

L. O. Svaasand, C. J. Gomer, E. Morinelli, "On the physical rationale of laser induced hyperthermia," Lasers Med. Sci. 5, 121‒128 (1990)
[Crossref]

Tan, F.

Q. You, Q. Sun, J. Wang, X. Tan, X. Pang, L. Liu, M. Yu, F. Tan, N. Li, "A single-light triggered and dual-imaging guided multifunctional platform for combined photothermal and photodynamic therapy based on TD-controlled and ICG-loaded CuS@mSiO2," Nanoscale 9, 3784‒3796 (2017)
[Crossref] [PubMed]

Tan, X.

Q. You, Q. Sun, J. Wang, X. Tan, X. Pang, L. Liu, M. Yu, F. Tan, N. Li, "A single-light triggered and dual-imaging guided multifunctional platform for combined photothermal and photodynamic therapy based on TD-controlled and ICG-loaded CuS@mSiO2," Nanoscale 9, 3784‒3796 (2017)
[Crossref] [PubMed]

Tang, J.

X. Xie, X. Shao, F. Gao, H. Jin, J. Zhou, L. Du, Y. Zhang, W. Ouyang, X. Wang, L. Zhao, X. Zhang, J. Tang, "Effect of hyperthermia on invasion ability and TGF-β1 expression of breast carcinoma MCF-7 cells," Oncol. Rep. 25, 1573‒1579 (2011)

Tang, Z.

S. Liu, A. Doughty, C. West, Z. Tang, F. Zhou, W. R. Chen, "Determination of temperature distribution in tissue for interstitial cancer photothermal therapy," Int. J. Hyperth. 34, 756‒763 (2018)
[Crossref] [PubMed]

Tung, C.-H.

U. Mahmood, C.-H. Tung, J. A. Bogdanov, R. Weissleder, "Near-infrared optical imaging of protease activity for tumor detection," Radiology 213, 866‒870 (1999)
[Crossref] [PubMed]

Wang, J.

Q. You, Q. Sun, J. Wang, X. Tan, X. Pang, L. Liu, M. Yu, F. Tan, N. Li, "A single-light triggered and dual-imaging guided multifunctional platform for combined photothermal and photodynamic therapy based on TD-controlled and ICG-loaded CuS@mSiO2," Nanoscale 9, 3784‒3796 (2017)
[Crossref] [PubMed]

Wang, X.

S. Gao, D. Chen, Q. Li, J. Ye, H. Jiang, C. Amatore, X. Wang, "Near-infrared fluorescence imaging of cancer cells and tumors through specific biosynthesis of silver nanoclusters," Sci. Rep. 4, 4384 (2014)
[Crossref] [PubMed]

X. Xie, X. Shao, F. Gao, H. Jin, J. Zhou, L. Du, Y. Zhang, W. Ouyang, X. Wang, L. Zhao, X. Zhang, J. Tang, "Effect of hyperthermia on invasion ability and TGF-β1 expression of breast carcinoma MCF-7 cells," Oncol. Rep. 25, 1573‒1579 (2011)

Webber, J.

G. Shafirstein, W. Bäumler, L. J. Hennings, E. R. Siegel, R. Friedman, M. A. Moreno, J. Webber, C. Jackson, R. J. Griffin, "Indocyanine green enhanced near-infrared laser treatment of murine mammary carcinoma," Int. J. Cancer 130, 1208‒1215 (2012)
[Crossref] [PubMed]

Weissleder, R.

U. Mahmood, C.-H. Tung, J. A. Bogdanov, R. Weissleder, "Near-infrared optical imaging of protease activity for tumor detection," Radiology 213, 866‒870 (1999)
[Crossref] [PubMed]

West, C.

S. Liu, A. Doughty, C. West, Z. Tang, F. Zhou, W. R. Chen, "Determination of temperature distribution in tissue for interstitial cancer photothermal therapy," Int. J. Hyperth. 34, 756‒763 (2018)
[Crossref] [PubMed]

West, J. L.

E. S. Day, J. G. Morton, J. L. West, "Nanoparticles for thermal cancer therapy," J. Biomech. Eng. 131, (2009)
[Crossref] [PubMed]

Xiao, L.

L. Xiao, X. Chen, X. Yang, J. Sun, J. Geng, "Recent advances in polymer-based photothermal materials for biological applications," ACS Appl. Polym. Mater. 2, 4273‒4288 (2020)
[Crossref]

Xie, X.

X. Xie, X. Shao, F. Gao, H. Jin, J. Zhou, L. Du, Y. Zhang, W. Ouyang, X. Wang, L. Zhao, X. Zhang, J. Tang, "Effect of hyperthermia on invasion ability and TGF-β1 expression of breast carcinoma MCF-7 cells," Oncol. Rep. 25, 1573‒1579 (2011)

Xie, Y.

H. S. Choi, S. L. Gibbs, J. H. Lee, S. H. Kim, Y. Ashitate, F. Liu, H. Hyun, G. Park, Y. Xie, S. Bae, M. Henary, J. V. Frangioni, "Targeted zwitterionic near-infrared fluorophores for improved optical imaging," Nat. Biotechnol. 31, 148‒153 (2013)
[Crossref] [PubMed]

Xing, B.

B. Liu, C. Li, B. Xing, P. Yang, J. Lin, "Multifunctional UCNPs@PDA-ICG nanocomposites for upconversion imaging and combined photothermal/photodynamic therapy with enhanced antitumor efficacy," J. Mater. Chem. B 4, 4884‒4894 (2016)
[Crossref] [PubMed]

Yang, P.

B. Liu, C. Li, B. Xing, P. Yang, J. Lin, "Multifunctional UCNPs@PDA-ICG nanocomposites for upconversion imaging and combined photothermal/photodynamic therapy with enhanced antitumor efficacy," J. Mater. Chem. B 4, 4884‒4894 (2016)
[Crossref] [PubMed]

Yang, X.

L. Xiao, X. Chen, X. Yang, J. Sun, J. Geng, "Recent advances in polymer-based photothermal materials for biological applications," ACS Appl. Polym. Mater. 2, 4273‒4288 (2020)
[Crossref]

Ye, J.

S. Gao, D. Chen, Q. Li, J. Ye, H. Jiang, C. Amatore, X. Wang, "Near-infrared fluorescence imaging of cancer cells and tumors through specific biosynthesis of silver nanoclusters," Sci. Rep. 4, 4384 (2014)
[Crossref] [PubMed]

You, Q.

Q. You, Q. Sun, J. Wang, X. Tan, X. Pang, L. Liu, M. Yu, F. Tan, N. Li, "A single-light triggered and dual-imaging guided multifunctional platform for combined photothermal and photodynamic therapy based on TD-controlled and ICG-loaded CuS@mSiO2," Nanoscale 9, 3784‒3796 (2017)
[Crossref] [PubMed]

Yu, M.

Q. You, Q. Sun, J. Wang, X. Tan, X. Pang, L. Liu, M. Yu, F. Tan, N. Li, "A single-light triggered and dual-imaging guided multifunctional platform for combined photothermal and photodynamic therapy based on TD-controlled and ICG-loaded CuS@mSiO2," Nanoscale 9, 3784‒3796 (2017)
[Crossref] [PubMed]

Zhang, X.

X. Xie, X. Shao, F. Gao, H. Jin, J. Zhou, L. Du, Y. Zhang, W. Ouyang, X. Wang, L. Zhao, X. Zhang, J. Tang, "Effect of hyperthermia on invasion ability and TGF-β1 expression of breast carcinoma MCF-7 cells," Oncol. Rep. 25, 1573‒1579 (2011)

Zhang, Y.

X. Xie, X. Shao, F. Gao, H. Jin, J. Zhou, L. Du, Y. Zhang, W. Ouyang, X. Wang, L. Zhao, X. Zhang, J. Tang, "Effect of hyperthermia on invasion ability and TGF-β1 expression of breast carcinoma MCF-7 cells," Oncol. Rep. 25, 1573‒1579 (2011)

Zhao, L.

X. Xie, X. Shao, F. Gao, H. Jin, J. Zhou, L. Du, Y. Zhang, W. Ouyang, X. Wang, L. Zhao, X. Zhang, J. Tang, "Effect of hyperthermia on invasion ability and TGF-β1 expression of breast carcinoma MCF-7 cells," Oncol. Rep. 25, 1573‒1579 (2011)

Zhou, F.

S. Liu, A. Doughty, C. West, Z. Tang, F. Zhou, W. R. Chen, "Determination of temperature distribution in tissue for interstitial cancer photothermal therapy," Int. J. Hyperth. 34, 756‒763 (2018)
[Crossref] [PubMed]

Zhou, J.

X. Xie, X. Shao, F. Gao, H. Jin, J. Zhou, L. Du, Y. Zhang, W. Ouyang, X. Wang, L. Zhao, X. Zhang, J. Tang, "Effect of hyperthermia on invasion ability and TGF-β1 expression of breast carcinoma MCF-7 cells," Oncol. Rep. 25, 1573‒1579 (2011)

ACS Appl. Polym. Mater. (1)

L. Xiao, X. Chen, X. Yang, J. Sun, J. Geng, "Recent advances in polymer-based photothermal materials for biological applications," ACS Appl. Polym. Mater. 2, 4273‒4288 (2020)
[Crossref]

Biomimetics (1)

D. Maziukiewicz, B. F. Grześkowiak, E. Coy, S. Jurga, R. Mrówczyński, "NDs@PDA@ICG Conjugates for photothermal therapy of glioblastoma multiforme," Biomimetics 4, 3 (2019)
[Crossref] [PubMed]

Cancer Res. (1)

A. Mukhopadhaya, J. Mendecki, X. Dong, L. Liu, S. Kalnicki, M. Garg, A. Alfieri, C. Guha, "Localized hyperthermia combined with intratumoral dendritic cells induces systemic antitumor immunity," Cancer Res. 67, 7798‒7806 (2007)
[Crossref] [PubMed]

Int. J. Cancer (1)

G. Shafirstein, W. Bäumler, L. J. Hennings, E. R. Siegel, R. Friedman, M. A. Moreno, J. Webber, C. Jackson, R. J. Griffin, "Indocyanine green enhanced near-infrared laser treatment of murine mammary carcinoma," Int. J. Cancer 130, 1208‒1215 (2012)
[Crossref] [PubMed]

Int. J. Hyperth. (2)

C. W. Song, H. J. Park, C. K. Lee, R. Griffin, "Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment," Int. J. Hyperth. 21, 761‒767 (2005)
[Crossref] [PubMed]

S. Liu, A. Doughty, C. West, Z. Tang, F. Zhou, W. R. Chen, "Determination of temperature distribution in tissue for interstitial cancer photothermal therapy," Int. J. Hyperth. 34, 756‒763 (2018)
[Crossref] [PubMed]

J. Am. Optom. Assoc. (1)

V. L. Dzurinko, A. S. Gurwood, J. R. Price, "Intravenous and indocyanine green angiography," J. Am. Optom. Assoc. 75, 743‒755 (2004)
[Crossref]

J. Biomech. Eng. (1)

E. S. Day, J. G. Morton, J. L. West, "Nanoparticles for thermal cancer therapy," J. Biomech. Eng. 131, (2009)
[Crossref] [PubMed]

J. Mater. Chem. B (1)

B. Liu, C. Li, B. Xing, P. Yang, J. Lin, "Multifunctional UCNPs@PDA-ICG nanocomposites for upconversion imaging and combined photothermal/photodynamic therapy with enhanced antitumor efficacy," J. Mater. Chem. B 4, 4884‒4894 (2016)
[Crossref] [PubMed]

J. Photochem. Photobiol. B (1)

G. Jori, J. D. Spikes, "Photothermal sensitizers: possible use in tumor therapy," J. Photochem. Photobiol. B 6, 93‒101 (1990)
[Crossref]

J. Surg. Res. (1)

M. Nikfarjam, V. Muralidharan, C. Christophi, "Mechanisms of focal heat destruction of liver tumors," J. Surg. Res. 127, 208‒223 (2005)
[Crossref] [PubMed]

Lasers Med. Sci. (1)

L. O. Svaasand, C. J. Gomer, E. Morinelli, "On the physical rationale of laser induced hyperthermia," Lasers Med. Sci. 5, 121‒128 (1990)
[Crossref]

Lasers Surg. Med. (1)

A. Klein, W. Bäumler, M. Koller, G. Shafirstein, E. A. Kohl, M. Landthaler, P. Babilas, "Indocyanine green-augmented diode laser therapy of telangiectatic leg veins: a randomized controlled proof-of-concept trial," Lasers Surg. Med. 44, 369‒376 (2012)
[Crossref] [PubMed]

Materials (1)

A. C. V. Doughty, A. R. Hoover, E. Layton, C. K. Murray, E. W. Howard, W. R. Chen, "Nanomaterial applications in photothermal therapy for cancer," Materials 12, 779 (2019)
[Crossref] [PubMed]

Nanoscale (1)

Q. You, Q. Sun, J. Wang, X. Tan, X. Pang, L. Liu, M. Yu, F. Tan, N. Li, "A single-light triggered and dual-imaging guided multifunctional platform for combined photothermal and photodynamic therapy based on TD-controlled and ICG-loaded CuS@mSiO2," Nanoscale 9, 3784‒3796 (2017)
[Crossref] [PubMed]

Nat. Biotechnol. (1)

H. S. Choi, S. L. Gibbs, J. H. Lee, S. H. Kim, Y. Ashitate, F. Liu, H. Hyun, G. Park, Y. Xie, S. Bae, M. Henary, J. V. Frangioni, "Targeted zwitterionic near-infrared fluorophores for improved optical imaging," Nat. Biotechnol. 31, 148‒153 (2013)
[Crossref] [PubMed]

Oncol. Rep. (1)

X. Xie, X. Shao, F. Gao, H. Jin, J. Zhou, L. Du, Y. Zhang, W. Ouyang, X. Wang, L. Zhao, X. Zhang, J. Tang, "Effect of hyperthermia on invasion ability and TGF-β1 expression of breast carcinoma MCF-7 cells," Oncol. Rep. 25, 1573‒1579 (2011)

Phys. Med. Biol. (1)

R. C. Benson, H. A. Kues, "Fluorescence properties of indocyanine green as related to angiography," Phys. Med. Biol. 23, 159‒163 (1978)
[Crossref] [PubMed]

Radiology (1)

U. Mahmood, C.-H. Tung, J. A. Bogdanov, R. Weissleder, "Near-infrared optical imaging of protease activity for tumor detection," Radiology 213, 866‒870 (1999)
[Crossref] [PubMed]

Sci. Rep. (2)

C. Shirata, J. Kaneko, Y. Inagaki, T. Kokudo, M. Sato, S. Kiritani, N. Akamatsu, J. Arita, Y. Sakamoto, K. Hasegawa, N. Kokudo, "Near-infrared photothermal/photodynamic therapy with indocyanine green induces apoptosis of hepatocellular carcinoma cells through oxidative stress," Sci. Rep. 7, (2017)
[Crossref] [PubMed]

S. Gao, D. Chen, Q. Li, J. Ye, H. Jiang, C. Amatore, X. Wang, "Near-infrared fluorescence imaging of cancer cells and tumors through specific biosynthesis of silver nanoclusters," Sci. Rep. 4, 4384 (2014)
[Crossref] [PubMed]

Science (1)

R. Anderson, J. Parrish, "Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation," Science 220, 524‒527 (1983)
[Crossref] [PubMed]

Surv. Ophthalmol. (1)

T. Desmettre, J. M. Devoisselle, S. Mordon, "Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography," Surv. Ophthalmol. 45, 15‒27 (2000)
[Crossref]

Other (1)

F. A. Merchant, A. Periasamy, Fluorescence Imaging in Microscope Image Processing, Q. Wu, F. A. Merchant, and K. R. Castleman, Eds .

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.