Abstract

Frequency-multiplication technology based on microwave photonic principles can be used to generate microwave and millimeter wave signals with a wide frequency tuning range. However, the existing cascaded external modulation frequency-tupling scheme needs to ensure the phase coherence of the modulated Radio Frequency (RF) signal, while the phase modulation directly limits the frequency tuning range of the external modulation frequency multiplication. In this paper, a novel approach for generating an incoherent frequency 12-tupling signal with cascade modulation is proposed. The structure of cascaded dual-parallel Mach-Zehnder modulators can generate a frequency 12-tupling signal. The proposed structure uses no filter or phase control of the RF driving signal. Microwave photonic frequency-tupling was realized under incoherent conditions. Software simulations and experiments validated the proposed structure and proved that it can generate frequency 12-tupling microwave signals under incoherent conditions. Both the frequency range and reliability of the frequency-tupling system has been improved by the proposed structure.

PDF Article

References

  • View by:

  1. K. V. Selvana and M. S. M. Ali2016Micro-scale energy harvesting devices: review of methodological performances in the last decadeRenew. Sustain. Energy Rev.5410351047
  2. G. Serafino, F. Scotti, L. Lembo, B. Hussain, C. Porzi, A. Malacarne, S. Maresca, D. Onori, P. Ghelfi, and A. Bogoni2019Toward a new generation of radar systems based on microwave photonic technologiesJ. Light. Technol.37643650
  3. S. Pan and Y. Zhang2020Microwave photonic radarsJ. Light. Technol.3854505484
  4. D. Grodensky, D. Kravitz, and A. Zadok2012Ultra-wideband microwave-photonic noise radar based on optical waveform generationIEEE Photon. Technol. Lett.24839841
  5. J. Yao2011Photonic generation of microwave arbitrary waveformsOpt. Commun.28437233736
  6. J. Yao2009Microwave photonicsJ. Light. Technol.27314335
  7. P. Bouyer, T. L. Gustavson, K. G. Haritos, and M. A. Kasevich1996Microwave signal generation with optical injection lockingOpt. Lett.2115021504
  8. J. S. Suelzer, N. G. Usechak, P. S. Devgan, and T. B. Simpson2019Tunable microwave signals based on injection-locked lasers with feedbackU.S. Patent US10522965B2
  9. U. Gliese, T.N. Nielsen, M. Bruun, E. L. Christensen, K.E. Stubkjaer, S. Lindgren, and B. Broberg1992A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriersIEEE Photon. Technol. Lett.4936938
  10. Z. Samoud, A. Hraghi, and M. MenifA performance comparison between lumped, distributed and optical phase locked local oscillator used in the photonic generation of millimeter-wave signals for radio over fiber systemsProc. SPIE11031110311A
  11. Y. Zhou, Z. Lu, L. Li, Y. Zhang, J. Zheng, Y. Du, L. Zou, Y. Shi, X. Zhang, and Y. Chen2019Tunable microwave generation utilizing monolithic integrated two-section DFB laserLaser Phys.29046201
  12. Y. Yao, X. Chen, Y. Dai, and S. Xie2006Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generationIEEE Photon. Technol. Lett.18187189
  13. X.S. Yao and L. Maleki1996Optoelectronic oscillator for photonic systemsIEEE J. Quantum Electron.3211411149
  14. Y.-C. Teng, B.-F. Zhang, R.-T. Zhou, Q.-G. Wang, and H.-L. Wang2015Phase tunable optoelectronic oscillator based on the Faraday rotator mirrorJ. Optoelectron. Laser420742078
  15. G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle2005Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation techniqueIEEE Trans. Microw. Theory Tech.5330903097
  16. W. Li, J. Yao, and .2010Investigation of photonically assisted microwave frequency multiplication based on external modulationIEEE Trans. Microw. Theory Tech.5832593268
  17. P.-T. Shih, J. Chen, C.-T. Lin, W.-Jiang, H.-S. Huang, P.-C. Peng, and S. Chi2010Optical millimeter-wave signal generation via frequency 12-tuplingJ. Light, Technol.28717828
  18. Y. Li, Y. Teng, P. Xiang, H. Zhu, J. Zheng, T. Pu, X. Zhang, J. Li, X. Meng, and F. Zhou2020Generation of wide continuous tunable octupling frequency microwave signal based on modulator cascade without phase shifter and optical filterOpt. Eng.59016105
  19. Z. Zhu, S. Zhao, W. Zheng, W. Wang, and B. Lin2015Filterless frequency 12-tupling optical millimeter-wave generation using two cascaded dual-parallel Mach-Zehnder modulatorsAppl. Opt.5494329440
  20. Z. Zhu, S. Zhao, X. Chu, and Y. Dong2015Optical generation of millimeter-wave signals via frequency 16-tupling without an optical filterOpt. Commun.3544047
  21. H. Chen, T. Ning, W. Jian, L. Pei, J. Li, H. You, and C. Zhang2013D-band millimeter-wave generator based on a frequency 16-tupling feed-forward modulation techniqueOpt. Eng.52076104
  22. S. Pan and J. Yao2010Tunable subterahertz wave generation based on photonic frequency sextupling using a polarization modulator and a wavelength-fixed notch filterIEEE Trans. Microw. Theory Tech.5819671975
  23. W. Liu and J. Yao2014Photonic generation of microwave waveforms based on a polarization modulator in a Sagnac loopJ. Light. Technol.3236373644
  24. R. Li, W. Li, X. Chen, and J. Yao2015Millimeter-wave vector signal generation based on a bi-directional use of a polarization modulator in a Sagnac loopJ. Light. Technol.33251257
  25. E. H. W. Chan, W. Zhang, and R. A. Minasian2012Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase controlJ. Light. Technol.3036723678

Other (25)

K. V. Selvana and M. S. M. Ali2016Micro-scale energy harvesting devices: review of methodological performances in the last decadeRenew. Sustain. Energy Rev.5410351047

G. Serafino, F. Scotti, L. Lembo, B. Hussain, C. Porzi, A. Malacarne, S. Maresca, D. Onori, P. Ghelfi, and A. Bogoni2019Toward a new generation of radar systems based on microwave photonic technologiesJ. Light. Technol.37643650

S. Pan and Y. Zhang2020Microwave photonic radarsJ. Light. Technol.3854505484

D. Grodensky, D. Kravitz, and A. Zadok2012Ultra-wideband microwave-photonic noise radar based on optical waveform generationIEEE Photon. Technol. Lett.24839841

J. Yao2011Photonic generation of microwave arbitrary waveformsOpt. Commun.28437233736

J. Yao2009Microwave photonicsJ. Light. Technol.27314335

P. Bouyer, T. L. Gustavson, K. G. Haritos, and M. A. Kasevich1996Microwave signal generation with optical injection lockingOpt. Lett.2115021504

J. S. Suelzer, N. G. Usechak, P. S. Devgan, and T. B. Simpson2019Tunable microwave signals based on injection-locked lasers with feedbackU.S. Patent US10522965B2

U. Gliese, T.N. Nielsen, M. Bruun, E. L. Christensen, K.E. Stubkjaer, S. Lindgren, and B. Broberg1992A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriersIEEE Photon. Technol. Lett.4936938

Z. Samoud, A. Hraghi, and M. MenifA performance comparison between lumped, distributed and optical phase locked local oscillator used in the photonic generation of millimeter-wave signals for radio over fiber systemsProc. SPIE11031110311A

Y. Zhou, Z. Lu, L. Li, Y. Zhang, J. Zheng, Y. Du, L. Zou, Y. Shi, X. Zhang, and Y. Chen2019Tunable microwave generation utilizing monolithic integrated two-section DFB laserLaser Phys.29046201

Y. Yao, X. Chen, Y. Dai, and S. Xie2006Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generationIEEE Photon. Technol. Lett.18187189

X.S. Yao and L. Maleki1996Optoelectronic oscillator for photonic systemsIEEE J. Quantum Electron.3211411149

Y.-C. Teng, B.-F. Zhang, R.-T. Zhou, Q.-G. Wang, and H.-L. Wang2015Phase tunable optoelectronic oscillator based on the Faraday rotator mirrorJ. Optoelectron. Laser420742078

G. Qi, J. Yao, J. Seregelyi, S. Paquet, and C. Belisle2005Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation techniqueIEEE Trans. Microw. Theory Tech.5330903097

W. Li, J. Yao, and .2010Investigation of photonically assisted microwave frequency multiplication based on external modulationIEEE Trans. Microw. Theory Tech.5832593268

P.-T. Shih, J. Chen, C.-T. Lin, W.-Jiang, H.-S. Huang, P.-C. Peng, and S. Chi2010Optical millimeter-wave signal generation via frequency 12-tuplingJ. Light, Technol.28717828

Y. Li, Y. Teng, P. Xiang, H. Zhu, J. Zheng, T. Pu, X. Zhang, J. Li, X. Meng, and F. Zhou2020Generation of wide continuous tunable octupling frequency microwave signal based on modulator cascade without phase shifter and optical filterOpt. Eng.59016105

Z. Zhu, S. Zhao, W. Zheng, W. Wang, and B. Lin2015Filterless frequency 12-tupling optical millimeter-wave generation using two cascaded dual-parallel Mach-Zehnder modulatorsAppl. Opt.5494329440

Z. Zhu, S. Zhao, X. Chu, and Y. Dong2015Optical generation of millimeter-wave signals via frequency 16-tupling without an optical filterOpt. Commun.3544047

H. Chen, T. Ning, W. Jian, L. Pei, J. Li, H. You, and C. Zhang2013D-band millimeter-wave generator based on a frequency 16-tupling feed-forward modulation techniqueOpt. Eng.52076104

S. Pan and J. Yao2010Tunable subterahertz wave generation based on photonic frequency sextupling using a polarization modulator and a wavelength-fixed notch filterIEEE Trans. Microw. Theory Tech.5819671975

W. Liu and J. Yao2014Photonic generation of microwave waveforms based on a polarization modulator in a Sagnac loopJ. Light. Technol.3236373644

R. Li, W. Li, X. Chen, and J. Yao2015Millimeter-wave vector signal generation based on a bi-directional use of a polarization modulator in a Sagnac loopJ. Light. Technol.33251257

E. H. W. Chan, W. Zhang, and R. A. Minasian2012Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase controlJ. Light. Technol.3036723678

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.