Abstract

Modern distance sensing methods employ various measurement principles, including triangulation, time-of-flight, confocal, interferometric and frequency comb. Among them, the triangulation method, with a laser light source and an image sensor, is widely used in low-cost applications. We developed an omnidirectional two-dimensional (2D) distance sensor based on the triangulation principle for indoor floor mapping applications. The sensor has a range of 150–1500 mm with a relative resolution better than 4% over the range and 1% at 1 meter distance. It rotationally scans a compact one-dimensional (1D) distance sensor, composed of a near infrared (NIR) laser diode, a folding mirror, an imaging lens, and an image detector. We designed the sensor layout and configuration to satisfy the required measurement range and resolution, selecting easily available components in a special effort to reduce cost. We built a prototype and tested it with seven representative indoor wall specimens (white wallpaper, gray wallpaper, black wallpaper, furniture wood, black leather, brown leather, and white plastic) in a typical indoor illuminated condition, 200 lux, on a floor under ceiling mounted fluorescent lamps. We confirmed the proposed sensor provided reliable distance reading of all the specimens over the required measurement range (150–1500 mm) with a measurement resolution of 4% overall and 1% at 1 meter, regardless of illumination conditions.

PDF Article

References

  • View by:
  • |

  1. G. Berkovic and E. Shafir2012Optical methods for distance and displacement measurementsAdv. Opt. Photon.4441471
  2. J. A. S. D. Fonseca, A. Baptista, M. J. Martins, and J. P. N. Torres2017Distance measurement systems using lasers and their applicationsAppl. Phys. Res.93343
  3. J. H. Lee, B. G. You, S.-W. Park, and H. Kim2020Motion-free TSOM using a deformable mirrorOpt. Express281635216362
  4. Y. S. Suh2019Laser sensors for displacement, distance and positionSensors191924
  5. X. S. Yao, X. Liu, and P. Hao2020Scan-less 3D optical sensing/Lidar scheme enabled by wavelength division demultiplexing and position-to-angle conversion of a lensOpt. Express283588435897
  6. J. Bai, X. Li, Q. Zhou, K. Ni, and X. Wang2019Improved chromatic confocal displacement-sensor based on a spatial-bandpass-filter and an X-shaped fiber-couplerOpt. Express271096110973
  7. K. Thurner, F. P. Quacquarelli, P.-F. Braun, C. D. Savio, and K. Karrai2015Fiber-based distance sensing interferometryAppl. Opt.5430513063
  8. J. E. Posada-Roman, H. Angelina, B. Jerez, M. Ruiz-LLata, and P. Acedo2017Laser range finder approach based on a fieldable electro-optic dual optical frequency comb: a proof of conceptAppl. Opt.5660876093
  9. S. Kumar, P. Tiwari, and S. B. ChaudhuryAn optical triangulation method for non-contact profile measurementProc. IEEE International Conference on Industrial TechnologyDec. 2006Mumbai, India28782833
  10. Z. Zhang, Q. Feng, Z. Gao, C. Kuang, C. Fei, Z. Li, and J. Ding2008A new laser displacement sensor based on triangulation for gauge real-time measurementOpt. Laser Technol.40252255
  11. M. F. M. Costa2012Optical triangulation-based microtopographic inspection of surfacesSensors1243994420
  12. P. Kenley, L. Batariol, M. Akgül, M. H. Köhler, K. Wang, M. Jakobi, and A. W. Koch2020Optical setup for error compensation in a laser triangulation systemSensors204949
  13. Wikipedia2019JulyRobotic vacuum cleanerWikipediahttp://en.wikipedia.org/wiki/Robotic_vacuum_cleanerAccessed Date: 9 Feb. 2021
  14. H. SternLaser based 3D surface mapping for manufacturing diagnostics and reverse engineeringProc. Proceedings of the IEEE 1992 National Aerospace and Electronics @m_NAECONMay. 1992Dayton, OH, USA12051212
  15. Z. dong, X. Sun, W. Liu, and H. Yang2018Measurement of free-form curved surfaces using laser triangulationSensors183527
  16. Micro-Epsilon2021MarLaser scanners for 2D/3D profile measurementsMicro-Epsilonhttps://www.micro-epsilon.com/2D_3D/laser-scanner/?sLang=enAccessed Date: 24 Mar. 2021
  17. Y. J. Bae, B. W. Ha, J. A. Park, and C. S. Cho20143-D reconstruction of human face using the derivative Moiré topographyJ. Opt. Soc. Korea18500506
  18. P. Siekański, K. Magda, K. Malowany, J. Rutkiewicz, A. Styk, J. Krzesłowski, T. Kowaluk, and A. Zagórski2019On-line laser triangulation scanner for wood logs surface geometry measurementSensors191074
  19. J. Sun, G. Li, D. Wen, B. Xue, and S. Yang2011A sub-pixel centroid algorithm for star image based on Gaussian distributionTrans. Japan Soc. Aero. Space Sci.53307310
  20. K.-W. Roh, T.-K. Uhm, J.-Y. Kim, S.-K. Youn, and J. H. Lee2008Noise-insensitive centroiding algorithm for a Shack-Hartmann sensorJ. Korean Phys. Soc.52160169
  21. 2014May15Safety of laser products - Part 1: Equipment classification and requirements, IEC 60825-1: 3.0International Electrotechnical CommitteeEU[Online] https://infostore.saiglobal.com/preview/98701189622.pdf?sku=861160_saig_nsai_nsai_2048777
  22. 2011The Lighting of Workplaces, EN 12464-1Comite European de NormalisationEU
  23. J.-S. Hwang2010Measurement system of bidirectional reflectance-distribution functionKorean J. Opt. Photon.214652
  24. X. Li, X. Li, and C. Wang2015Optimum threshold selection method of centroid computation for Gaussian spotProc. SPIE9675967517

Other (24)

G. Berkovic and E. Shafir2012Optical methods for distance and displacement measurementsAdv. Opt. Photon.4441471

J. A. S. D. Fonseca, A. Baptista, M. J. Martins, and J. P. N. Torres2017Distance measurement systems using lasers and their applicationsAppl. Phys. Res.93343

J. H. Lee, B. G. You, S.-W. Park, and H. Kim2020Motion-free TSOM using a deformable mirrorOpt. Express281635216362

Y. S. Suh2019Laser sensors for displacement, distance and positionSensors191924

X. S. Yao, X. Liu, and P. Hao2020Scan-less 3D optical sensing/Lidar scheme enabled by wavelength division demultiplexing and position-to-angle conversion of a lensOpt. Express283588435897

J. Bai, X. Li, Q. Zhou, K. Ni, and X. Wang2019Improved chromatic confocal displacement-sensor based on a spatial-bandpass-filter and an X-shaped fiber-couplerOpt. Express271096110973

K. Thurner, F. P. Quacquarelli, P.-F. Braun, C. D. Savio, and K. Karrai2015Fiber-based distance sensing interferometryAppl. Opt.5430513063

J. E. Posada-Roman, H. Angelina, B. Jerez, M. Ruiz-LLata, and P. Acedo2017Laser range finder approach based on a fieldable electro-optic dual optical frequency comb: a proof of conceptAppl. Opt.5660876093

S. Kumar, P. Tiwari, and S. B. ChaudhuryAn optical triangulation method for non-contact profile measurementProc. IEEE International Conference on Industrial TechnologyDec. 2006Mumbai, India28782833

Z. Zhang, Q. Feng, Z. Gao, C. Kuang, C. Fei, Z. Li, and J. Ding2008A new laser displacement sensor based on triangulation for gauge real-time measurementOpt. Laser Technol.40252255

M. F. M. Costa2012Optical triangulation-based microtopographic inspection of surfacesSensors1243994420

P. Kenley, L. Batariol, M. Akgül, M. H. Köhler, K. Wang, M. Jakobi, and A. W. Koch2020Optical setup for error compensation in a laser triangulation systemSensors204949

Wikipedia2019JulyRobotic vacuum cleanerWikipediahttp://en.wikipedia.org/wiki/Robotic_vacuum_cleanerAccessed Date: 9 Feb. 2021

H. SternLaser based 3D surface mapping for manufacturing diagnostics and reverse engineeringProc. Proceedings of the IEEE 1992 National Aerospace and Electronics @m_NAECONMay. 1992Dayton, OH, USA12051212

Z. dong, X. Sun, W. Liu, and H. Yang2018Measurement of free-form curved surfaces using laser triangulationSensors183527

Micro-Epsilon2021MarLaser scanners for 2D/3D profile measurementsMicro-Epsilonhttps://www.micro-epsilon.com/2D_3D/laser-scanner/?sLang=enAccessed Date: 24 Mar. 2021

Y. J. Bae, B. W. Ha, J. A. Park, and C. S. Cho20143-D reconstruction of human face using the derivative Moiré topographyJ. Opt. Soc. Korea18500506

P. Siekański, K. Magda, K. Malowany, J. Rutkiewicz, A. Styk, J. Krzesłowski, T. Kowaluk, and A. Zagórski2019On-line laser triangulation scanner for wood logs surface geometry measurementSensors191074

J. Sun, G. Li, D. Wen, B. Xue, and S. Yang2011A sub-pixel centroid algorithm for star image based on Gaussian distributionTrans. Japan Soc. Aero. Space Sci.53307310

K.-W. Roh, T.-K. Uhm, J.-Y. Kim, S.-K. Youn, and J. H. Lee2008Noise-insensitive centroiding algorithm for a Shack-Hartmann sensorJ. Korean Phys. Soc.52160169

2014May15Safety of laser products - Part 1: Equipment classification and requirements, IEC 60825-1: 3.0International Electrotechnical CommitteeEU[Online] https://infostore.saiglobal.com/preview/98701189622.pdf?sku=861160_saig_nsai_nsai_2048777

2011The Lighting of Workplaces, EN 12464-1Comite European de NormalisationEU

J.-S. Hwang2010Measurement system of bidirectional reflectance-distribution functionKorean J. Opt. Photon.214652

X. Li, X. Li, and C. Wang2015Optimum threshold selection method of centroid computation for Gaussian spotProc. SPIE9675967517

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.