Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Impact of Optical Filter Bandwidth on Performance of All-optical Automatic Gain-controlled Erbium-doped Fiber Amplifiers

Open Access Open Access

Abstract

We have investigated the impact of optical filter bandwidth on the performance of all-optical automatic gain-controlled (AGC) erbium-doped fiber amplifiers (EDFAs). In principle, an optical bandpass filter (OBPF) should be placed within the feedback gain-clamping loop to set the lasing wavelength as well as the passband of the feedback amplified spontaneous emission (ASE) in all-optical AGC EDFA. From our measurement results, we found that the power level of feedback ASE with 0.1 nm passband of the optical filter was smaller than the ones with >0.2 nm passband cases. Therefore, the peak-to-peak power variation of the surviving channel with 0.1 nm passband was much larger than the ones with >0.2 nm passband. In addition, no significant difference in the power level of the feedback ASE was observed when the passband of the optical filter was ranging from 0.2 nm to 4.5 nm in our measurements. From these results, we have concluded that the passband of the optical filter should be slightly larger than 0.2 nm by taking into account the effect of feedback ASE power and the efficient use of the EDFA gain spectrum for the lasing ASE peak.

© 2020 Optical Society of Korea

PDF Article
More Like This
Design and analysis of dynamic erbium-doped fiber amplifier gain-clamping systems with feedback control

Hao Li, Ying Zhang, Yeng Chai Soh, and Changyun Wen
J. Opt. Soc. Am. B 24(8) 1739-1748 (2007)

Opto-optical gain-clamped L-band erbium-doped fiber amplifier with C-band control signal

A. A. A. Bakar, M. A. Mahdi, M. H. Al-Mansoori, S. Shaari, and A. K. Zamzuri
Appl. Opt. 48(12) 2340-2343 (2009)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.

Alert me when this article is cited.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.