Abstract

Extensive tumor resection accompanied by radiotherapy and chemotherapy is the standard of care for malignant gliomas. However, there is a significant obstacle to the complete resection of the tumor due to the difficulty of distinguishing tumor and normal brain tissue with a conventional surgical microscope. Recently, multiple studies have shown the possibility of fluorescence-guided surgery in malignant gliomas. The most used fluorescence dyes for brain tumor surgery are 5-aminolevulinic acid (5-ALA) and indocyanine green (ICG). In this paper, a new fluorescence guided operation system, which can detect both 5-ALA and ICG fluorescent images simultaneously, is presented. This operation system consists of light emitting diodes (LEDs) which emits 410 nm and 740 nm wavelengths. We have performed experiments on rats in order to verify the operation of the newly developed operation system. Oral administration and imaging were performed to observe the fluorescence of 5-ALA and ICG fluorescence in rats. When LEDs at wavelengths of 410 nm and 740 nm were irradiated on rats, 628 nm wavelength with a violet fluorescence color and 825 nm wavelength with a red fluorescence color were expressed in 5-ALA and ICG fluorescent material, respectively, thus we were able to distinguish the tumor tissues easily. Previously, due to the poor resolution of the conventional surgical microscope and the fact that the color of the vein is similar to that of the tumor, the tumor resection margin was not easy to observe, thus increasing the likelihood for cancer recurrence. However, when the tumor is observed through the fluorescence guided operation system, it is possible to easily distinguish the color with the naked eye and it can be completely removed. Therefore, it is expected that surgical removal of cancerous tumors will be possible and surgical applications and surgical microscopes for cancer tumor removal surgery will be promising in the future.

PDF Article

References

  • View by:
  • |

  1. F. Lefranc, N. Sadeghi, I. Camby, T. Metens, O. Dewitte, and R. KissPresent and potential future issues in glioblastoma treatmentExpert Rev. Anticancer Ther.20066719732
  2. F. W. Boele, A. G. Rooney, R. Grant, and M. KleinPsychiatric symptoms in glioma patients: from diagnosis to managementNeuropsychiatr. Dis. Treat.20151114131420
  3. T. Walbert and K. ChasteenPalliative and supportive care for glioma patientsCancer Treat. Res.20151637184
  4. W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, and H. J. ReulenFluorescence-guided resection of glioblastoma muliforme utilizing 5-ALA-induced porphyrins: a prospective study in consecutive patientsJ. Neurosurg.20009310031013
  5. C. T. Wen, Y. Y. Liu, H. Y. Fang, M. J. Hsieh, and Y. K. ChaoImage-guided video-assisted thoracoscopic small lung tumor resection using near-infrared markingSurg. Endosc.20183246734680
  6. J. T. Alander, I. Kaartinen, A. Laakso, T. Patila, T. Spillmann, V. V. Tuchin, M. Venermo, and Petri VälisuoA Review of Indocyanine Green Fluorescent Imaging in SurgeryInt. J. Biomed. Imaging20122012126
  7. H. E. Cline, C. L. Dumoulin, W. E. Lorensen, H. R. Hart, and S. Ludke3D reconstruction of the brain from magnetic resonance images using a connectivity algorithmMagn. Reson. Imaging19875345352
  8. W. M. Wells, P. Viola, H. Atsumi, S. Nakajima, and R. KikinisMulti-modal volume registration by maximization of mutual informationMed. Image Anal.199613551
  9. H. E. Cline, W. E. Lorensen, R. Kikinis, and F. A. JoleszThree-dimensional segmentation of MR images of the head using probability and connectivityJ. Comput. Assist. Tomogr.19901410371045
  10. C. Malkanthi and M. B. DissanayakeBrain tumor boundary segmentation of MR imaging using spatial domain image processingInt. J. Innovation Educ. Res.2017519
  11. N. Unno, M. Suzuki, N. Yamamoto, K. Inuzuka, D. Sagara, M. Nishiyama, H. Tanaka, and H. KonnoIundocyanine green fluorescence angiography for intraoperative assessment of blood flow: a feasibility studyEur. J. Vasc. Endovasc. Surg.200835205207
  12. T. Desmettre, J. M. Devoisselle, and S. MordonFluorescence properties and metabolic features of indocyanine green (ICG) as related to angiographySurv. Ophthalmol.2000451527
  13. R. B. Price, D. Labrie, F. A. Rueggeberg, and C. M. FelixIrradiance differences in the violet (405 nm) and blue (460 nm) spectral ranges among dental light-curing unitsJ. Esthet. Restor. Dent.201022363377
  14. M. Atif, M. F. Alam, S. Firdous, S. S. Z. Zaidi, R. Suleman, and M. IkramStudy of the efficacy of 5-ALA mediated photodynamic therapy on human rhabdomyosarcoma cell line (RD)Laser Phys. Lett.20107757764
  15. IC-GreenTMIndocyanine Green for Injection, USP Sterile NDA 11-525-S-017
  16. B. L. Teng, M. Nakada, Y. Hayashi, T. Yoneyama, S. G. Zhao, and J. I. HamadaClinical management and evolving novel therapeutic strategies for patients with brain tumorsIntech Open Science & Open Minds2013249Chapter 12

Other (16)

F. Lefranc, N. Sadeghi, I. Camby, T. Metens, O. Dewitte, and R. KissPresent and potential future issues in glioblastoma treatmentExpert Rev. Anticancer Ther.20066719732

F. W. Boele, A. G. Rooney, R. Grant, and M. KleinPsychiatric symptoms in glioma patients: from diagnosis to managementNeuropsychiatr. Dis. Treat.20151114131420

T. Walbert and K. ChasteenPalliative and supportive care for glioma patientsCancer Treat. Res.20151637184

W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, and H. J. ReulenFluorescence-guided resection of glioblastoma muliforme utilizing 5-ALA-induced porphyrins: a prospective study in consecutive patientsJ. Neurosurg.20009310031013

C. T. Wen, Y. Y. Liu, H. Y. Fang, M. J. Hsieh, and Y. K. ChaoImage-guided video-assisted thoracoscopic small lung tumor resection using near-infrared markingSurg. Endosc.20183246734680

J. T. Alander, I. Kaartinen, A. Laakso, T. Patila, T. Spillmann, V. V. Tuchin, M. Venermo, and Petri VälisuoA Review of Indocyanine Green Fluorescent Imaging in SurgeryInt. J. Biomed. Imaging20122012126

H. E. Cline, C. L. Dumoulin, W. E. Lorensen, H. R. Hart, and S. Ludke3D reconstruction of the brain from magnetic resonance images using a connectivity algorithmMagn. Reson. Imaging19875345352

W. M. Wells, P. Viola, H. Atsumi, S. Nakajima, and R. KikinisMulti-modal volume registration by maximization of mutual informationMed. Image Anal.199613551

H. E. Cline, W. E. Lorensen, R. Kikinis, and F. A. JoleszThree-dimensional segmentation of MR images of the head using probability and connectivityJ. Comput. Assist. Tomogr.19901410371045

C. Malkanthi and M. B. DissanayakeBrain tumor boundary segmentation of MR imaging using spatial domain image processingInt. J. Innovation Educ. Res.2017519

N. Unno, M. Suzuki, N. Yamamoto, K. Inuzuka, D. Sagara, M. Nishiyama, H. Tanaka, and H. KonnoIundocyanine green fluorescence angiography for intraoperative assessment of blood flow: a feasibility studyEur. J. Vasc. Endovasc. Surg.200835205207

T. Desmettre, J. M. Devoisselle, and S. MordonFluorescence properties and metabolic features of indocyanine green (ICG) as related to angiographySurv. Ophthalmol.2000451527

R. B. Price, D. Labrie, F. A. Rueggeberg, and C. M. FelixIrradiance differences in the violet (405 nm) and blue (460 nm) spectral ranges among dental light-curing unitsJ. Esthet. Restor. Dent.201022363377

M. Atif, M. F. Alam, S. Firdous, S. S. Z. Zaidi, R. Suleman, and M. IkramStudy of the efficacy of 5-ALA mediated photodynamic therapy on human rhabdomyosarcoma cell line (RD)Laser Phys. Lett.20107757764

IC-GreenTMIndocyanine Green for Injection, USP Sterile NDA 11-525-S-017

B. L. Teng, M. Nakada, Y. Hayashi, T. Yoneyama, S. G. Zhao, and J. I. HamadaClinical management and evolving novel therapeutic strategies for patients with brain tumorsIntech Open Science & Open Minds2013249Chapter 12

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.