Abstract

The vibration sensitivities of optical cavities depending on the support area were investigated, both numerically and experimentally. We performed numerical simulations with two models: one with total constraint of the support area, and the other with only vertical constraint. An optimal support condition insensitive to the support’s area could be found by numerical simulation. The support area was determined in the experiment by a Viton rubber pad. The vertical, transverse, and longitudinal vibration sensitivities were measured experimentally. The experimental result agreed with the numerical simulation of a sliding model (only vertical constraint).

PDF Article

References

  • View by:
  • |

  1. S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. YeA Fermidegenerate three-dimensional optical lattice clockScience20173589094
  2. M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. LudlowUltrastable optical clock with two cold-atom ensemblesNat. Photon.2017114852
  3. N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. KatoriFrequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging timeNat. Photon.201610258261
  4. H. Kim, M.-S. Heo, W.-K. Lee, C. Y. Park, H.-G. Hong, S.-W. Hwang, and D.-H. YuImproved absolute frequency measurement of the 171Yb optical lattice clock at KRISS relative to the SI secondJpn. J. Appl. Phys.201756050302
  5. A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. HollbergFemtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency referencesOpt. Lett.200560667669
  6. E. Wiens, A. Yu. Nevsky, and S. SchillerResonator with ultrahigh length stability as a probe for equivalence-principle-violating physicsPhys. Rev. Lett.2016117271102
  7. S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, R. L. Walsworth, and J. YeGravitational wave detection with optical lattice atomic clocksPhys. Rev. D201694124043
  8. Y. V. Stadnik and V. V. FlambaumEnhanced effects of variation of the fundamental constants in laser interferometers and application to dark-matter detectionPhys. Rev. A201693063630
  9. A. A. Geraci, C. Bradley, D. Gao, J. Weinstein, and A. DereviankoSearching for ultra-light dark matter with optical cavities2018arXiv1808.00540
  10. J. Millo, D. V. Magalhães, C. Mandache, Y. Le Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. SantarelliUltrastable lasers based on vibration insensitive cavitiesPhys. Rev. A200979053829
  11. S. A. Webster, M. Oxborrow, and P. GillVibration insensitive optical cavityPhys. Rev. A200775011801(R)
  12. S. A. Webster, M. Oxborrow, S. Pugla, J. Millo, and P. GillThermal-noise-limited optical cavityPhys. Rev. A200877033847
  13. T. Nazarova, F. Riehle, and U. SterrVibration-insensitive reference cavity for an ultra-narrow-linewidth laserAppl. Phys. B200683531536
  14. Y. N. Zhao, J. Zhang, , A. Stejskal, T. Liu, V. Elman, Z. H. Lu, and L. J. WangA vibration-insensitive optical cavity and absolute determination of its ultrahigh stabilityOpt. Express20091789708982
  15. M. Notcutt, L.-S. Ma, J. Ye, and J. L. HallSimple and compact 1-Hz laser system via an improved mounting configuration of a reference cavityOpt. Lett.20053018151817
  16. Ludlow A. D., Huang X., Notcutt M., Zanon-Willette T., Foreman , S. M., Boyd M. M., Blatt S., and Ye J.Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1 × 10−15Opt. Lett.200732641
  17. S. Amairi, T. Legero, T. Kessler, U. Sterr, J. B. Wübbena, O. Mandel, and P. O. SchmidtReducing the effect of thermal noise in optical cavitiesAppl. Phys. B2013113233242
  18. J. Keller, S. Ignatovich, S. A. Webster, and T. E. MehlstäublerSimple vibration-insensitive cavity for laser stabilization at the 10−16 levelAppl. Phys. B2014116203210
  19. Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. OatesMaking optical atomic clocks more stable with 10−16-level laser stabilizationNat. Photon.20115158161
  20. T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. YeComparison of two independent Sr optical clocks with 1 × 10−17 stability at 103 sPhys. Rev. Lett.2012109230801
  21. S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr8 × 10−17 fractional laser frequency instability with a long room-temperature cavityOpt. Lett.20154021122115
  22. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. YeA sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavityNat. Photon.20126687692
  23. D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr1.5 µm lasers with sub-10 mHz linewidthPhys. Rev. Lett.2017118263202
  24. G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. AspelmeyerTenfold reduction of Brownian noise in highreflectivity optical coatingsNat. Photon.20137644650
  25. C. Y. Park, D.-H. Yu, W.-K. Lee, S. E. Park, E. B. Kim, S. K. Lee, J. W. Cho, T. H. Yoon, J. Mun, S. J. Park, T. Y. Kwon, and S.-B. LeeAbsolute frequency measurement of 1S0 (F = 1/2) – 3P0 (F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISSMetrologia201350119128
  26. D.-H. Yu, C. Y. Park, W.-K. Lee, S. Lee, S. E. Park, J. Mun, S.-B. Lee, and T. Y. KwonAn Yb optical lattice clock: current status at KRISSJ. Korean Phys. Soc.201363883889
  27. S. Lee, C. Y. Park, W.-K. Lee, and D.-H. YuCancellation of collisional frequency shifts in optical lattice clocks with Rabi spectroscopyNew J. Phys.201618033030
  28. https://www.corning.com/worldwide/en/products/advanced-optics/product-materials/semiconductor-laser-optic-components/ultra-low-expansion-glass.html
  29. The numerical simulation was performed using a commercial software (SolidWorks)Commercial products are identified for technical clarity. Such identification does not imply endorsement by the authors
  30. E. B. Kim, W.-K. Lee, C. Y. Park, D.-H. Yu, and S. E. ParkNarrow linewidth 578 nm light generation using frequency-doubling with a waveguide PPLN pumped by an optical injection-locked diode laserOpt. Express2010181030810314
  31. W.-K. Lee, C. Y. Park, D.-H. Yu, S. E. Park, S.-B. Lee, and T. Y. KwonGeneration of 578-nm yellow light over 10 mW by second harmonic generation of an 1156-nm external-cavity diode laserOpt. Express2011191745317461
  32. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. WardLaser phase and frequency stabilization using an optical resonatorAppl. Phys. B19833197105

Other (32)

S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. YeA Fermidegenerate three-dimensional optical lattice clockScience20173589094

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. LudlowUltrastable optical clock with two cold-atom ensemblesNat. Photon.2017114852

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. KatoriFrequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging timeNat. Photon.201610258261

H. Kim, M.-S. Heo, W.-K. Lee, C. Y. Park, H.-G. Hong, S.-W. Hwang, and D.-H. YuImproved absolute frequency measurement of the 171Yb optical lattice clock at KRISS relative to the SI secondJpn. J. Appl. Phys.201756050302

A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. H. Oskay, and L. HollbergFemtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency referencesOpt. Lett.200560667669

E. Wiens, A. Yu. Nevsky, and S. SchillerResonator with ultrahigh length stability as a probe for equivalence-principle-violating physicsPhys. Rev. Lett.2016117271102

S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, R. L. Walsworth, and J. YeGravitational wave detection with optical lattice atomic clocksPhys. Rev. D201694124043

Y. V. Stadnik and V. V. FlambaumEnhanced effects of variation of the fundamental constants in laser interferometers and application to dark-matter detectionPhys. Rev. A201693063630

A. A. Geraci, C. Bradley, D. Gao, J. Weinstein, and A. DereviankoSearching for ultra-light dark matter with optical cavities2018arXiv1808.00540

J. Millo, D. V. Magalhães, C. Mandache, Y. Le Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. SantarelliUltrastable lasers based on vibration insensitive cavitiesPhys. Rev. A200979053829

S. A. Webster, M. Oxborrow, and P. GillVibration insensitive optical cavityPhys. Rev. A200775011801(R)

S. A. Webster, M. Oxborrow, S. Pugla, J. Millo, and P. GillThermal-noise-limited optical cavityPhys. Rev. A200877033847

T. Nazarova, F. Riehle, and U. SterrVibration-insensitive reference cavity for an ultra-narrow-linewidth laserAppl. Phys. B200683531536

Y. N. Zhao, J. Zhang, , A. Stejskal, T. Liu, V. Elman, Z. H. Lu, and L. J. WangA vibration-insensitive optical cavity and absolute determination of its ultrahigh stabilityOpt. Express20091789708982

M. Notcutt, L.-S. Ma, J. Ye, and J. L. HallSimple and compact 1-Hz laser system via an improved mounting configuration of a reference cavityOpt. Lett.20053018151817

Ludlow A. D., Huang X., Notcutt M., Zanon-Willette T., Foreman , S. M., Boyd M. M., Blatt S., and Ye J.Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1 × 10−15Opt. Lett.200732641

S. Amairi, T. Legero, T. Kessler, U. Sterr, J. B. Wübbena, O. Mandel, and P. O. SchmidtReducing the effect of thermal noise in optical cavitiesAppl. Phys. B2013113233242

J. Keller, S. Ignatovich, S. A. Webster, and T. E. MehlstäublerSimple vibration-insensitive cavity for laser stabilization at the 10−16 levelAppl. Phys. B2014116203210

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. OatesMaking optical atomic clocks more stable with 10−16-level laser stabilizationNat. Photon.20115158161

T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. YeComparison of two independent Sr optical clocks with 1 × 10−17 stability at 103 sPhys. Rev. Lett.2012109230801

S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr8 × 10−17 fractional laser frequency instability with a long room-temperature cavityOpt. Lett.20154021122115

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. YeA sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavityNat. Photon.20126687692

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr1.5 µm lasers with sub-10 mHz linewidthPhys. Rev. Lett.2017118263202

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. AspelmeyerTenfold reduction of Brownian noise in highreflectivity optical coatingsNat. Photon.20137644650

C. Y. Park, D.-H. Yu, W.-K. Lee, S. E. Park, E. B. Kim, S. K. Lee, J. W. Cho, T. H. Yoon, J. Mun, S. J. Park, T. Y. Kwon, and S.-B. LeeAbsolute frequency measurement of 1S0 (F = 1/2) – 3P0 (F = 1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISSMetrologia201350119128

D.-H. Yu, C. Y. Park, W.-K. Lee, S. Lee, S. E. Park, J. Mun, S.-B. Lee, and T. Y. KwonAn Yb optical lattice clock: current status at KRISSJ. Korean Phys. Soc.201363883889

S. Lee, C. Y. Park, W.-K. Lee, and D.-H. YuCancellation of collisional frequency shifts in optical lattice clocks with Rabi spectroscopyNew J. Phys.201618033030

https://www.corning.com/worldwide/en/products/advanced-optics/product-materials/semiconductor-laser-optic-components/ultra-low-expansion-glass.html

The numerical simulation was performed using a commercial software (SolidWorks)Commercial products are identified for technical clarity. Such identification does not imply endorsement by the authors

E. B. Kim, W.-K. Lee, C. Y. Park, D.-H. Yu, and S. E. ParkNarrow linewidth 578 nm light generation using frequency-doubling with a waveguide PPLN pumped by an optical injection-locked diode laserOpt. Express2010181030810314

W.-K. Lee, C. Y. Park, D.-H. Yu, S. E. Park, S.-B. Lee, and T. Y. KwonGeneration of 578-nm yellow light over 10 mW by second harmonic generation of an 1156-nm external-cavity diode laserOpt. Express2011191745317461

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. WardLaser phase and frequency stabilization using an optical resonatorAppl. Phys. B19833197105

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.