Abstract

The visible-light communication (VLC) system is a promising candidate to fulfill the present and future demands for a high-speed, cost-effective, and larger-bandwidth communication system. VLC modulates the visible-light signals from solid-state LEDs to transmit data between transmitter and receiver, but the broadcasting and the line-of-sight propagation nature of visible-light signals make VLC a communication system with a limited operating range. We present a novel architecture to increase the operating range of VLC. In our proposed architecture, we guide the visible-light signals through the fiber and amplify the dissipated signals using visible-light fiber amplifiers (VLFAs), which are the most important and the novel devices needed for the proposed architecture of the VLC. Therefore, we design, analyze, and apply a VLFA to VLC, to overcome the inherent drawbacks of VLC. Numerical results show that under given constant conditions, the VLFA can amplify the signal up to 35.0 dB. We have analyzed the effects of fiber length, active ion concentration, pump power, and input signal power on the gain and the noise figure (NF).

PDF Article

References

  • View by:
  • |

  1. X. Dong, X. Cheng, H. Sun, and Y. ChuScheduling with heterogeneous QoS provisioning for indoor visible-light communicationCurr. Opt. Photon.201823946
  2. S.-M. KimVisible light communication employing optical beamforming: A reviewCurr. Opt. Photon.20182308314
  3. S. Vappangi and V. ManiConcurrent illumination and communication: A survey on visible light communicationPhys. Commun.20193390114
  4. F. Zafar, M. Bakaul, and R. ParthibanLaser-diode-based visible light communication: Toward gigabit class communicationIEEE Commun. Mag.201755144151
  5. M. Morales-Cespedes, M. C. Paredes-Paredes, A. G. Armada, and L. VandendropeAligning the light without channel state information for visible light communicationsIEEE J. Sel. Areas Commun.20183691105
  6. H. Li, F. Wang, J. Zhang, and C. LiuSecrecy performance analysis of MISO visible light communication systems with spatial modulatioDigital Signal Process.201881116128
  7. R. Mulyawan, H. Chun, A. Gomez, S. Rajbhandari, G. Faulkner, P. P. Manousiadis, D. A. Vithanage, G. A. Turnbull, I. D. W. Samuel, S. Collins, and D. O’BrienMIMO visible light communications using a wide field-of-view fluorescent concentratorIEEE Photon. Technol. Lett.201729306309
  8. Y. Xiang, M. Zhang, M. Kavehrad, and M. I. S. ChowdhuryHuman shadowing effect on indoor visible light communications channel characteristicsOpt. Eng.201453086113
  9. W. A. Pisarski, J. Pisarska, R. Lisiecki, and W. RybaRomanowskiErbium-doped lead silicate glass for nearinfrared emission and temperature-dependent up-conversion applicationsOpto-Electron. Rev.201725238241
  10. P. C. Becker, N. A. Olsson, and J. R. SimpsonErbium-doped fiber amplifiers: fundamentals and technologyElsevier1999Chapter 4-7
  11. W. J. MiniscalcoM. J. F. DigonnetRare-Earth-Doped Fiber Lasers and Amplifiers2nd ed.Marcel DekkerNew York200117112Optical and electronic properties of rare earth ions in glasses
  12. C. Jiang and L. SunGain characteristics of 980-nm pumped Er3+-Tm3+-Pr3+-co-doped fiberAppl. Phys. B200995703707
  13. K. Damak, E. Yousef, S. AlFaify, C. Russel, and R. MaalejRaman, green and infrared emission cross-sections of Er3+ doped TZPPN tellurite glassOpt. Mater. Expres20144597612
  14. E. Desurvire, J. R. Simpson, and P. C. BeckerHigh-gain erbium-doped traveling-wave fiber AmplifierOpt. Lett.198712888890
  15. F. Huang, X. Liu, L. Hu, and D. ChenSpectroscopic properties and energy transfer Parameters of Er3+-doped fluorozirconate and oxyfluoroaluminate glassesSci. Rep.201445053
  16. Y. Hu, S. Jiang, G. Sorbello, T. Luo, Y. Ding, B. Hwang, J. Kim, H. Seo, and N. PeyghambarianNumerical analyses of the population dynamics and determination of the upconversion coefficients in a new high erbium-doped tellurite glassJ. Opt. Soc. Am. B20011819281934
  17. S. O. Kasap and R. K. SinhaOptoelectronics and photonics: principles and practicesPrentice HallNew Jersey, USAChapter 4

Other (17)

X. Dong, X. Cheng, H. Sun, and Y. ChuScheduling with heterogeneous QoS provisioning for indoor visible-light communicationCurr. Opt. Photon.201823946

S.-M. KimVisible light communication employing optical beamforming: A reviewCurr. Opt. Photon.20182308314

S. Vappangi and V. ManiConcurrent illumination and communication: A survey on visible light communicationPhys. Commun.20193390114

F. Zafar, M. Bakaul, and R. ParthibanLaser-diode-based visible light communication: Toward gigabit class communicationIEEE Commun. Mag.201755144151

M. Morales-Cespedes, M. C. Paredes-Paredes, A. G. Armada, and L. VandendropeAligning the light without channel state information for visible light communicationsIEEE J. Sel. Areas Commun.20183691105

H. Li, F. Wang, J. Zhang, and C. LiuSecrecy performance analysis of MISO visible light communication systems with spatial modulatioDigital Signal Process.201881116128

R. Mulyawan, H. Chun, A. Gomez, S. Rajbhandari, G. Faulkner, P. P. Manousiadis, D. A. Vithanage, G. A. Turnbull, I. D. W. Samuel, S. Collins, and D. O’BrienMIMO visible light communications using a wide field-of-view fluorescent concentratorIEEE Photon. Technol. Lett.201729306309

Y. Xiang, M. Zhang, M. Kavehrad, and M. I. S. ChowdhuryHuman shadowing effect on indoor visible light communications channel characteristicsOpt. Eng.201453086113

W. A. Pisarski, J. Pisarska, R. Lisiecki, and W. RybaRomanowskiErbium-doped lead silicate glass for nearinfrared emission and temperature-dependent up-conversion applicationsOpto-Electron. Rev.201725238241

P. C. Becker, N. A. Olsson, and J. R. SimpsonErbium-doped fiber amplifiers: fundamentals and technologyElsevier1999Chapter 4-7

W. J. MiniscalcoM. J. F. DigonnetRare-Earth-Doped Fiber Lasers and Amplifiers2nd ed.Marcel DekkerNew York200117112Optical and electronic properties of rare earth ions in glasses

C. Jiang and L. SunGain characteristics of 980-nm pumped Er3+-Tm3+-Pr3+-co-doped fiberAppl. Phys. B200995703707

K. Damak, E. Yousef, S. AlFaify, C. Russel, and R. MaalejRaman, green and infrared emission cross-sections of Er3+ doped TZPPN tellurite glassOpt. Mater. Expres20144597612

E. Desurvire, J. R. Simpson, and P. C. BeckerHigh-gain erbium-doped traveling-wave fiber AmplifierOpt. Lett.198712888890

F. Huang, X. Liu, L. Hu, and D. ChenSpectroscopic properties and energy transfer Parameters of Er3+-doped fluorozirconate and oxyfluoroaluminate glassesSci. Rep.201445053

Y. Hu, S. Jiang, G. Sorbello, T. Luo, Y. Ding, B. Hwang, J. Kim, H. Seo, and N. PeyghambarianNumerical analyses of the population dynamics and determination of the upconversion coefficients in a new high erbium-doped tellurite glassJ. Opt. Soc. Am. B20011819281934

S. O. Kasap and R. K. SinhaOptoelectronics and photonics: principles and practicesPrentice HallNew Jersey, USAChapter 4

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.