Abstract

We present a novel and simple method to enable spatially selective ZnAl2O4 nanocrystal formation on the surface of B2O3-Al2O3-ZnO-CaO-K2O glass by employing localized laser heating. Optimized precipitation of glass-ceramics containing nanocrystals doped with Eu3+ and Yb3+ ions was performed by controlling CO2 laser power and scan speed. Micro-x-ray diffraction and transmission electron microscopy revealed the mean size and morphology of nanocrystals, and energy dispersive x-ray spectroscopy showed the lateral distribution of elements in the imaged area. Laser power and scan speed controled annealing temperature for crystalization in the range of 1.4-1.8 W and 0.01-0.3 mm/s, and changed the size of nanocrystals and distribution of dopant ions. We also report more than 20 times enhanced downshift visible emission under ultraviolet excitation, and 3 times increased upconversion emission from Eu3+ ions assisted by efficient sensitizer Yb3+ ions in nanocrystals under 980 nm excitation. The confocal microscope revealed the depth profile of Eu3+ ions by showing their emission intensity variation.

© 2018 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. K. Sampath and J. F. Cordaro, “Optical properties of zinc aluminate, zinc gallate, and zinc aluminogallate spinels,” J. Am. Ceram. Soc. 81, 649-654 (1998).
  2. A. J. Stevenson, H. Serier-Brault, P. Gredin, and M. Mortier, “Fluoride materials for optical applications: Single crystals, ceramics, glasses, and glass-ceramics,” J. Fluor. Chem. 132, 1165-1173 (2011).
    [Crossref]
  3. J.-P. R. Wells and R. J. Reeves, “Up-conversion fluorescence of Eu3+ doped alkaline earth fluoride crystals,” J. Lumin. 66-67, 219-223 (1995).
    [Crossref]
  4. S.-A. Song, D.-S. Kim, H.-M. Jeong, and K.-S. Lim, “Upconversion in Nd-Tm-Yb triply doped oxyfluoride glass-ceramics containing CaF2 nanocrystals,” J. Lumin. 152, 75-78 (2014).
    [Crossref]
  5. Y. Shang, S. Hao, C. Yang, and G. Chen, “Enhancing solar cell efficiency using photon upconversion materials,” Nanomaterials 5, 1782-1809 (2015).
    [Crossref]
  6. S.-Y. Wang, D.-A. Borca-Tasciuc, and D. A. Kaminski, “Optical properties of ultra-thin silicon films deposited on nanostructured anodic alumina surfaces,” Appl. Phys. Lett. 104, 081119 (2014).
    [Crossref]
  7. Y. Dwivedi, D. K. Rai, and S. B. Rai, “Stokes and anti-Stokes luminescence from Eu/Yb:BaB4O7 nanocrystals,” Opt. Mater. 32, 913-919 (2010).
    [Crossref]
  8. A. Bahadur, Y. Dwivedi, and S. B. Rai, “Structural and spectroscopic diagnosis of Eu:ZnO and Eu:Yb:ZnO glass and ceramics,” Spectrochim. Acta A 91, 217-221 (2012).
    [Crossref]
  9. G. M. Arzumanyan, E. A. Kuznetsov, A. A. Zhilin, O. S. Dymshits, D. V. Shemchuk, I. P. Alekseeva, A. V. Mudryi, V. D. Zhivulko, and O. M. Borodavchenko, “Photolumine-scence of transparent glass-ceramics based on ZnO nanocrystals and co-doped with Eu3+, Yb3+ ions,” Opt. Mater. 62, 666-672 (2016)
    [Crossref]
  10. D. S. Kim, J. H. Lee, and K. S. Lim, “Formation of Eu-doped CaF2 naonocrystals in glass-ceramics by infrared laser irradiation,” Appl. Mech. Mater. 749, 211-214 (2015).
    [Crossref]
  11. S. Gonzalez-Perez, I. R. Martin, and P. Haro-Gonzalez, “Local devitrification on an oxyfluoride glass doped with Ho3+ ions under Argon laser irradiation,” Opt. Mater. 31, 1373-1375 (2009).
    [Crossref]
  12. C. Russel, “Nanocrystallization of CaF2 from Na2O/K2O/CaO/CaF2/Al2O3/SiO2 Glasses,” Chem. Mater. 17, 5843-5847 (2005).
    [Crossref]
  13. A. L. Patterson, “The Scherrer formula for x-ray particle size determination,” Phys. Rev. 56, 978-981 (1939).
    [Crossref]
  14. F. Lahoz, I. R. Martin, J. Mendez-Ramos, and P. Nunez, “Dopant distribution in a Tm3+ -Yb3+ codoped silica based glass ceramic: An infrared-laser induced upconversion study,” J. Chem. Phys. 120, 6180-6190 (2004).
    [Crossref]
  15. A. S. S. de Camargo, L. A. O. Nunes, J. F. Silva, A. C. F. M. Costa, B. S. Barros, J. E. C. Silva, G. F. de Sa, and S. Alves Jr, “Efficient green and red upconversion emissions in Er3+/Yb3+ co-doped ZnAl2O4 phosphor obtained by combustion reaction,” J. Phys.: Condens. Matter. 19, 246209-4 (2007).
  16. G. Kaur, S. K. Singh, and S. B. Rai, “Eu3+ and Yb3+ codoped Gd2O3 single phase nanophosphor: An enhanced monochromatic red emission through cooperative upconversion and downconversion,” J. Appl. Phys. 107, 073514-6 (2010).
  17. K. Shinozaki, A. Noji, T. Honma, and T. Komatsu, “Morphology and photoluminescence properties of Er3+-doped CaF2 nanocrystals patterned by laser irradiation in oxyfluoride glasses,” J. Fluor. Chem. 145, 81-87 (2013).
    [Crossref]

2016 (1)

G. M. Arzumanyan, E. A. Kuznetsov, A. A. Zhilin, O. S. Dymshits, D. V. Shemchuk, I. P. Alekseeva, A. V. Mudryi, V. D. Zhivulko, and O. M. Borodavchenko, “Photolumine-scence of transparent glass-ceramics based on ZnO nanocrystals and co-doped with Eu3+, Yb3+ ions,” Opt. Mater. 62, 666-672 (2016)
[Crossref]

2015 (2)

D. S. Kim, J. H. Lee, and K. S. Lim, “Formation of Eu-doped CaF2 naonocrystals in glass-ceramics by infrared laser irradiation,” Appl. Mech. Mater. 749, 211-214 (2015).
[Crossref]

Y. Shang, S. Hao, C. Yang, and G. Chen, “Enhancing solar cell efficiency using photon upconversion materials,” Nanomaterials 5, 1782-1809 (2015).
[Crossref]

2014 (2)

S.-Y. Wang, D.-A. Borca-Tasciuc, and D. A. Kaminski, “Optical properties of ultra-thin silicon films deposited on nanostructured anodic alumina surfaces,” Appl. Phys. Lett. 104, 081119 (2014).
[Crossref]

S.-A. Song, D.-S. Kim, H.-M. Jeong, and K.-S. Lim, “Upconversion in Nd-Tm-Yb triply doped oxyfluoride glass-ceramics containing CaF2 nanocrystals,” J. Lumin. 152, 75-78 (2014).
[Crossref]

2013 (1)

K. Shinozaki, A. Noji, T. Honma, and T. Komatsu, “Morphology and photoluminescence properties of Er3+-doped CaF2 nanocrystals patterned by laser irradiation in oxyfluoride glasses,” J. Fluor. Chem. 145, 81-87 (2013).
[Crossref]

2012 (1)

A. Bahadur, Y. Dwivedi, and S. B. Rai, “Structural and spectroscopic diagnosis of Eu:ZnO and Eu:Yb:ZnO glass and ceramics,” Spectrochim. Acta A 91, 217-221 (2012).
[Crossref]

2011 (1)

A. J. Stevenson, H. Serier-Brault, P. Gredin, and M. Mortier, “Fluoride materials for optical applications: Single crystals, ceramics, glasses, and glass-ceramics,” J. Fluor. Chem. 132, 1165-1173 (2011).
[Crossref]

2010 (2)

Y. Dwivedi, D. K. Rai, and S. B. Rai, “Stokes and anti-Stokes luminescence from Eu/Yb:BaB4O7 nanocrystals,” Opt. Mater. 32, 913-919 (2010).
[Crossref]

G. Kaur, S. K. Singh, and S. B. Rai, “Eu3+ and Yb3+ codoped Gd2O3 single phase nanophosphor: An enhanced monochromatic red emission through cooperative upconversion and downconversion,” J. Appl. Phys. 107, 073514-6 (2010).

2009 (1)

S. Gonzalez-Perez, I. R. Martin, and P. Haro-Gonzalez, “Local devitrification on an oxyfluoride glass doped with Ho3+ ions under Argon laser irradiation,” Opt. Mater. 31, 1373-1375 (2009).
[Crossref]

2007 (1)

A. S. S. de Camargo, L. A. O. Nunes, J. F. Silva, A. C. F. M. Costa, B. S. Barros, J. E. C. Silva, G. F. de Sa, and S. Alves Jr, “Efficient green and red upconversion emissions in Er3+/Yb3+ co-doped ZnAl2O4 phosphor obtained by combustion reaction,” J. Phys.: Condens. Matter. 19, 246209-4 (2007).

2005 (1)

C. Russel, “Nanocrystallization of CaF2 from Na2O/K2O/CaO/CaF2/Al2O3/SiO2 Glasses,” Chem. Mater. 17, 5843-5847 (2005).
[Crossref]

2004 (1)

F. Lahoz, I. R. Martin, J. Mendez-Ramos, and P. Nunez, “Dopant distribution in a Tm3+ -Yb3+ codoped silica based glass ceramic: An infrared-laser induced upconversion study,” J. Chem. Phys. 120, 6180-6190 (2004).
[Crossref]

1998 (1)

S. K. Sampath and J. F. Cordaro, “Optical properties of zinc aluminate, zinc gallate, and zinc aluminogallate spinels,” J. Am. Ceram. Soc. 81, 649-654 (1998).

1995 (1)

J.-P. R. Wells and R. J. Reeves, “Up-conversion fluorescence of Eu3+ doped alkaline earth fluoride crystals,” J. Lumin. 66-67, 219-223 (1995).
[Crossref]

1939 (1)

A. L. Patterson, “The Scherrer formula for x-ray particle size determination,” Phys. Rev. 56, 978-981 (1939).
[Crossref]

Alekseeva, I. P.

G. M. Arzumanyan, E. A. Kuznetsov, A. A. Zhilin, O. S. Dymshits, D. V. Shemchuk, I. P. Alekseeva, A. V. Mudryi, V. D. Zhivulko, and O. M. Borodavchenko, “Photolumine-scence of transparent glass-ceramics based on ZnO nanocrystals and co-doped with Eu3+, Yb3+ ions,” Opt. Mater. 62, 666-672 (2016)
[Crossref]

Alves Jr, S.

A. S. S. de Camargo, L. A. O. Nunes, J. F. Silva, A. C. F. M. Costa, B. S. Barros, J. E. C. Silva, G. F. de Sa, and S. Alves Jr, “Efficient green and red upconversion emissions in Er3+/Yb3+ co-doped ZnAl2O4 phosphor obtained by combustion reaction,” J. Phys.: Condens. Matter. 19, 246209-4 (2007).

Arzumanyan, G. M.

G. M. Arzumanyan, E. A. Kuznetsov, A. A. Zhilin, O. S. Dymshits, D. V. Shemchuk, I. P. Alekseeva, A. V. Mudryi, V. D. Zhivulko, and O. M. Borodavchenko, “Photolumine-scence of transparent glass-ceramics based on ZnO nanocrystals and co-doped with Eu3+, Yb3+ ions,” Opt. Mater. 62, 666-672 (2016)
[Crossref]

Bahadur, A.

A. Bahadur, Y. Dwivedi, and S. B. Rai, “Structural and spectroscopic diagnosis of Eu:ZnO and Eu:Yb:ZnO glass and ceramics,” Spectrochim. Acta A 91, 217-221 (2012).
[Crossref]

Barros, B. S.

A. S. S. de Camargo, L. A. O. Nunes, J. F. Silva, A. C. F. M. Costa, B. S. Barros, J. E. C. Silva, G. F. de Sa, and S. Alves Jr, “Efficient green and red upconversion emissions in Er3+/Yb3+ co-doped ZnAl2O4 phosphor obtained by combustion reaction,” J. Phys.: Condens. Matter. 19, 246209-4 (2007).

Borca-Tasciuc, D.-A.

S.-Y. Wang, D.-A. Borca-Tasciuc, and D. A. Kaminski, “Optical properties of ultra-thin silicon films deposited on nanostructured anodic alumina surfaces,” Appl. Phys. Lett. 104, 081119 (2014).
[Crossref]

Borodavchenko, O. M.

G. M. Arzumanyan, E. A. Kuznetsov, A. A. Zhilin, O. S. Dymshits, D. V. Shemchuk, I. P. Alekseeva, A. V. Mudryi, V. D. Zhivulko, and O. M. Borodavchenko, “Photolumine-scence of transparent glass-ceramics based on ZnO nanocrystals and co-doped with Eu3+, Yb3+ ions,” Opt. Mater. 62, 666-672 (2016)
[Crossref]

Chen, G.

Y. Shang, S. Hao, C. Yang, and G. Chen, “Enhancing solar cell efficiency using photon upconversion materials,” Nanomaterials 5, 1782-1809 (2015).
[Crossref]

Cordaro, J. F.

S. K. Sampath and J. F. Cordaro, “Optical properties of zinc aluminate, zinc gallate, and zinc aluminogallate spinels,” J. Am. Ceram. Soc. 81, 649-654 (1998).

Costa, A. C. F. M.

A. S. S. de Camargo, L. A. O. Nunes, J. F. Silva, A. C. F. M. Costa, B. S. Barros, J. E. C. Silva, G. F. de Sa, and S. Alves Jr, “Efficient green and red upconversion emissions in Er3+/Yb3+ co-doped ZnAl2O4 phosphor obtained by combustion reaction,” J. Phys.: Condens. Matter. 19, 246209-4 (2007).

de Camargo, A. S. S.

A. S. S. de Camargo, L. A. O. Nunes, J. F. Silva, A. C. F. M. Costa, B. S. Barros, J. E. C. Silva, G. F. de Sa, and S. Alves Jr, “Efficient green and red upconversion emissions in Er3+/Yb3+ co-doped ZnAl2O4 phosphor obtained by combustion reaction,” J. Phys.: Condens. Matter. 19, 246209-4 (2007).

de Sa, G. F.

A. S. S. de Camargo, L. A. O. Nunes, J. F. Silva, A. C. F. M. Costa, B. S. Barros, J. E. C. Silva, G. F. de Sa, and S. Alves Jr, “Efficient green and red upconversion emissions in Er3+/Yb3+ co-doped ZnAl2O4 phosphor obtained by combustion reaction,” J. Phys.: Condens. Matter. 19, 246209-4 (2007).

Dwivedi, Y.

A. Bahadur, Y. Dwivedi, and S. B. Rai, “Structural and spectroscopic diagnosis of Eu:ZnO and Eu:Yb:ZnO glass and ceramics,” Spectrochim. Acta A 91, 217-221 (2012).
[Crossref]

Y. Dwivedi, D. K. Rai, and S. B. Rai, “Stokes and anti-Stokes luminescence from Eu/Yb:BaB4O7 nanocrystals,” Opt. Mater. 32, 913-919 (2010).
[Crossref]

Dymshits, O. S.

G. M. Arzumanyan, E. A. Kuznetsov, A. A. Zhilin, O. S. Dymshits, D. V. Shemchuk, I. P. Alekseeva, A. V. Mudryi, V. D. Zhivulko, and O. M. Borodavchenko, “Photolumine-scence of transparent glass-ceramics based on ZnO nanocrystals and co-doped with Eu3+, Yb3+ ions,” Opt. Mater. 62, 666-672 (2016)
[Crossref]

Gonzalez-Perez, S.

S. Gonzalez-Perez, I. R. Martin, and P. Haro-Gonzalez, “Local devitrification on an oxyfluoride glass doped with Ho3+ ions under Argon laser irradiation,” Opt. Mater. 31, 1373-1375 (2009).
[Crossref]

Gredin, P.

A. J. Stevenson, H. Serier-Brault, P. Gredin, and M. Mortier, “Fluoride materials for optical applications: Single crystals, ceramics, glasses, and glass-ceramics,” J. Fluor. Chem. 132, 1165-1173 (2011).
[Crossref]

Hao, S.

Y. Shang, S. Hao, C. Yang, and G. Chen, “Enhancing solar cell efficiency using photon upconversion materials,” Nanomaterials 5, 1782-1809 (2015).
[Crossref]

Haro-Gonzalez, P.

S. Gonzalez-Perez, I. R. Martin, and P. Haro-Gonzalez, “Local devitrification on an oxyfluoride glass doped with Ho3+ ions under Argon laser irradiation,” Opt. Mater. 31, 1373-1375 (2009).
[Crossref]

Honma, T.

K. Shinozaki, A. Noji, T. Honma, and T. Komatsu, “Morphology and photoluminescence properties of Er3+-doped CaF2 nanocrystals patterned by laser irradiation in oxyfluoride glasses,” J. Fluor. Chem. 145, 81-87 (2013).
[Crossref]

Jeong, H.-M.

S.-A. Song, D.-S. Kim, H.-M. Jeong, and K.-S. Lim, “Upconversion in Nd-Tm-Yb triply doped oxyfluoride glass-ceramics containing CaF2 nanocrystals,” J. Lumin. 152, 75-78 (2014).
[Crossref]

Kaminski, D. A.

S.-Y. Wang, D.-A. Borca-Tasciuc, and D. A. Kaminski, “Optical properties of ultra-thin silicon films deposited on nanostructured anodic alumina surfaces,” Appl. Phys. Lett. 104, 081119 (2014).
[Crossref]

Kaur, G.

G. Kaur, S. K. Singh, and S. B. Rai, “Eu3+ and Yb3+ codoped Gd2O3 single phase nanophosphor: An enhanced monochromatic red emission through cooperative upconversion and downconversion,” J. Appl. Phys. 107, 073514-6 (2010).

Kim, D. S.

D. S. Kim, J. H. Lee, and K. S. Lim, “Formation of Eu-doped CaF2 naonocrystals in glass-ceramics by infrared laser irradiation,” Appl. Mech. Mater. 749, 211-214 (2015).
[Crossref]

Kim, D.-S.

S.-A. Song, D.-S. Kim, H.-M. Jeong, and K.-S. Lim, “Upconversion in Nd-Tm-Yb triply doped oxyfluoride glass-ceramics containing CaF2 nanocrystals,” J. Lumin. 152, 75-78 (2014).
[Crossref]

Komatsu, T.

K. Shinozaki, A. Noji, T. Honma, and T. Komatsu, “Morphology and photoluminescence properties of Er3+-doped CaF2 nanocrystals patterned by laser irradiation in oxyfluoride glasses,” J. Fluor. Chem. 145, 81-87 (2013).
[Crossref]

Kuznetsov, E. A.

G. M. Arzumanyan, E. A. Kuznetsov, A. A. Zhilin, O. S. Dymshits, D. V. Shemchuk, I. P. Alekseeva, A. V. Mudryi, V. D. Zhivulko, and O. M. Borodavchenko, “Photolumine-scence of transparent glass-ceramics based on ZnO nanocrystals and co-doped with Eu3+, Yb3+ ions,” Opt. Mater. 62, 666-672 (2016)
[Crossref]

Lahoz, F.

F. Lahoz, I. R. Martin, J. Mendez-Ramos, and P. Nunez, “Dopant distribution in a Tm3+ -Yb3+ codoped silica based glass ceramic: An infrared-laser induced upconversion study,” J. Chem. Phys. 120, 6180-6190 (2004).
[Crossref]

Lee, J. H.

D. S. Kim, J. H. Lee, and K. S. Lim, “Formation of Eu-doped CaF2 naonocrystals in glass-ceramics by infrared laser irradiation,” Appl. Mech. Mater. 749, 211-214 (2015).
[Crossref]

Lim, K. S.

D. S. Kim, J. H. Lee, and K. S. Lim, “Formation of Eu-doped CaF2 naonocrystals in glass-ceramics by infrared laser irradiation,” Appl. Mech. Mater. 749, 211-214 (2015).
[Crossref]

Lim, K.-S.

S.-A. Song, D.-S. Kim, H.-M. Jeong, and K.-S. Lim, “Upconversion in Nd-Tm-Yb triply doped oxyfluoride glass-ceramics containing CaF2 nanocrystals,” J. Lumin. 152, 75-78 (2014).
[Crossref]

Martin, I. R.

S. Gonzalez-Perez, I. R. Martin, and P. Haro-Gonzalez, “Local devitrification on an oxyfluoride glass doped with Ho3+ ions under Argon laser irradiation,” Opt. Mater. 31, 1373-1375 (2009).
[Crossref]

F. Lahoz, I. R. Martin, J. Mendez-Ramos, and P. Nunez, “Dopant distribution in a Tm3+ -Yb3+ codoped silica based glass ceramic: An infrared-laser induced upconversion study,” J. Chem. Phys. 120, 6180-6190 (2004).
[Crossref]

Mendez-Ramos, J.

F. Lahoz, I. R. Martin, J. Mendez-Ramos, and P. Nunez, “Dopant distribution in a Tm3+ -Yb3+ codoped silica based glass ceramic: An infrared-laser induced upconversion study,” J. Chem. Phys. 120, 6180-6190 (2004).
[Crossref]

Mortier, M.

A. J. Stevenson, H. Serier-Brault, P. Gredin, and M. Mortier, “Fluoride materials for optical applications: Single crystals, ceramics, glasses, and glass-ceramics,” J. Fluor. Chem. 132, 1165-1173 (2011).
[Crossref]

Mudryi, A. V.

G. M. Arzumanyan, E. A. Kuznetsov, A. A. Zhilin, O. S. Dymshits, D. V. Shemchuk, I. P. Alekseeva, A. V. Mudryi, V. D. Zhivulko, and O. M. Borodavchenko, “Photolumine-scence of transparent glass-ceramics based on ZnO nanocrystals and co-doped with Eu3+, Yb3+ ions,” Opt. Mater. 62, 666-672 (2016)
[Crossref]

Noji, A.

K. Shinozaki, A. Noji, T. Honma, and T. Komatsu, “Morphology and photoluminescence properties of Er3+-doped CaF2 nanocrystals patterned by laser irradiation in oxyfluoride glasses,” J. Fluor. Chem. 145, 81-87 (2013).
[Crossref]

Nunes, L. A. O.

A. S. S. de Camargo, L. A. O. Nunes, J. F. Silva, A. C. F. M. Costa, B. S. Barros, J. E. C. Silva, G. F. de Sa, and S. Alves Jr, “Efficient green and red upconversion emissions in Er3+/Yb3+ co-doped ZnAl2O4 phosphor obtained by combustion reaction,” J. Phys.: Condens. Matter. 19, 246209-4 (2007).

Nunez, P.

F. Lahoz, I. R. Martin, J. Mendez-Ramos, and P. Nunez, “Dopant distribution in a Tm3+ -Yb3+ codoped silica based glass ceramic: An infrared-laser induced upconversion study,” J. Chem. Phys. 120, 6180-6190 (2004).
[Crossref]

Patterson, A. L.

A. L. Patterson, “The Scherrer formula for x-ray particle size determination,” Phys. Rev. 56, 978-981 (1939).
[Crossref]

Rai, D. K.

Y. Dwivedi, D. K. Rai, and S. B. Rai, “Stokes and anti-Stokes luminescence from Eu/Yb:BaB4O7 nanocrystals,” Opt. Mater. 32, 913-919 (2010).
[Crossref]

Rai, S. B.

A. Bahadur, Y. Dwivedi, and S. B. Rai, “Structural and spectroscopic diagnosis of Eu:ZnO and Eu:Yb:ZnO glass and ceramics,” Spectrochim. Acta A 91, 217-221 (2012).
[Crossref]

Y. Dwivedi, D. K. Rai, and S. B. Rai, “Stokes and anti-Stokes luminescence from Eu/Yb:BaB4O7 nanocrystals,” Opt. Mater. 32, 913-919 (2010).
[Crossref]

G. Kaur, S. K. Singh, and S. B. Rai, “Eu3+ and Yb3+ codoped Gd2O3 single phase nanophosphor: An enhanced monochromatic red emission through cooperative upconversion and downconversion,” J. Appl. Phys. 107, 073514-6 (2010).

Reeves, R. J.

J.-P. R. Wells and R. J. Reeves, “Up-conversion fluorescence of Eu3+ doped alkaline earth fluoride crystals,” J. Lumin. 66-67, 219-223 (1995).
[Crossref]

Russel, C.

C. Russel, “Nanocrystallization of CaF2 from Na2O/K2O/CaO/CaF2/Al2O3/SiO2 Glasses,” Chem. Mater. 17, 5843-5847 (2005).
[Crossref]

Sampath, S. K.

S. K. Sampath and J. F. Cordaro, “Optical properties of zinc aluminate, zinc gallate, and zinc aluminogallate spinels,” J. Am. Ceram. Soc. 81, 649-654 (1998).

Serier-Brault, H.

A. J. Stevenson, H. Serier-Brault, P. Gredin, and M. Mortier, “Fluoride materials for optical applications: Single crystals, ceramics, glasses, and glass-ceramics,” J. Fluor. Chem. 132, 1165-1173 (2011).
[Crossref]

Shang, Y.

Y. Shang, S. Hao, C. Yang, and G. Chen, “Enhancing solar cell efficiency using photon upconversion materials,” Nanomaterials 5, 1782-1809 (2015).
[Crossref]

Shemchuk, D. V.

G. M. Arzumanyan, E. A. Kuznetsov, A. A. Zhilin, O. S. Dymshits, D. V. Shemchuk, I. P. Alekseeva, A. V. Mudryi, V. D. Zhivulko, and O. M. Borodavchenko, “Photolumine-scence of transparent glass-ceramics based on ZnO nanocrystals and co-doped with Eu3+, Yb3+ ions,” Opt. Mater. 62, 666-672 (2016)
[Crossref]

Shinozaki, K.

K. Shinozaki, A. Noji, T. Honma, and T. Komatsu, “Morphology and photoluminescence properties of Er3+-doped CaF2 nanocrystals patterned by laser irradiation in oxyfluoride glasses,” J. Fluor. Chem. 145, 81-87 (2013).
[Crossref]

Silva, J. E. C.

A. S. S. de Camargo, L. A. O. Nunes, J. F. Silva, A. C. F. M. Costa, B. S. Barros, J. E. C. Silva, G. F. de Sa, and S. Alves Jr, “Efficient green and red upconversion emissions in Er3+/Yb3+ co-doped ZnAl2O4 phosphor obtained by combustion reaction,” J. Phys.: Condens. Matter. 19, 246209-4 (2007).

Silva, J. F.

A. S. S. de Camargo, L. A. O. Nunes, J. F. Silva, A. C. F. M. Costa, B. S. Barros, J. E. C. Silva, G. F. de Sa, and S. Alves Jr, “Efficient green and red upconversion emissions in Er3+/Yb3+ co-doped ZnAl2O4 phosphor obtained by combustion reaction,” J. Phys.: Condens. Matter. 19, 246209-4 (2007).

Singh, S. K.

G. Kaur, S. K. Singh, and S. B. Rai, “Eu3+ and Yb3+ codoped Gd2O3 single phase nanophosphor: An enhanced monochromatic red emission through cooperative upconversion and downconversion,” J. Appl. Phys. 107, 073514-6 (2010).

Song, S.-A.

S.-A. Song, D.-S. Kim, H.-M. Jeong, and K.-S. Lim, “Upconversion in Nd-Tm-Yb triply doped oxyfluoride glass-ceramics containing CaF2 nanocrystals,” J. Lumin. 152, 75-78 (2014).
[Crossref]

Stevenson, A. J.

A. J. Stevenson, H. Serier-Brault, P. Gredin, and M. Mortier, “Fluoride materials for optical applications: Single crystals, ceramics, glasses, and glass-ceramics,” J. Fluor. Chem. 132, 1165-1173 (2011).
[Crossref]

Wang, S.-Y.

S.-Y. Wang, D.-A. Borca-Tasciuc, and D. A. Kaminski, “Optical properties of ultra-thin silicon films deposited on nanostructured anodic alumina surfaces,” Appl. Phys. Lett. 104, 081119 (2014).
[Crossref]

Wells, J.-P. R.

J.-P. R. Wells and R. J. Reeves, “Up-conversion fluorescence of Eu3+ doped alkaline earth fluoride crystals,” J. Lumin. 66-67, 219-223 (1995).
[Crossref]

Yang, C.

Y. Shang, S. Hao, C. Yang, and G. Chen, “Enhancing solar cell efficiency using photon upconversion materials,” Nanomaterials 5, 1782-1809 (2015).
[Crossref]

Zhilin, A. A.

G. M. Arzumanyan, E. A. Kuznetsov, A. A. Zhilin, O. S. Dymshits, D. V. Shemchuk, I. P. Alekseeva, A. V. Mudryi, V. D. Zhivulko, and O. M. Borodavchenko, “Photolumine-scence of transparent glass-ceramics based on ZnO nanocrystals and co-doped with Eu3+, Yb3+ ions,” Opt. Mater. 62, 666-672 (2016)
[Crossref]

Zhivulko, V. D.

G. M. Arzumanyan, E. A. Kuznetsov, A. A. Zhilin, O. S. Dymshits, D. V. Shemchuk, I. P. Alekseeva, A. V. Mudryi, V. D. Zhivulko, and O. M. Borodavchenko, “Photolumine-scence of transparent glass-ceramics based on ZnO nanocrystals and co-doped with Eu3+, Yb3+ ions,” Opt. Mater. 62, 666-672 (2016)
[Crossref]

Appl. Mech. Mater. (1)

D. S. Kim, J. H. Lee, and K. S. Lim, “Formation of Eu-doped CaF2 naonocrystals in glass-ceramics by infrared laser irradiation,” Appl. Mech. Mater. 749, 211-214 (2015).
[Crossref]

Appl. Phys. Lett. (1)

S.-Y. Wang, D.-A. Borca-Tasciuc, and D. A. Kaminski, “Optical properties of ultra-thin silicon films deposited on nanostructured anodic alumina surfaces,” Appl. Phys. Lett. 104, 081119 (2014).
[Crossref]

Chem. Mater. (1)

C. Russel, “Nanocrystallization of CaF2 from Na2O/K2O/CaO/CaF2/Al2O3/SiO2 Glasses,” Chem. Mater. 17, 5843-5847 (2005).
[Crossref]

J. Am. Ceram. Soc. (1)

S. K. Sampath and J. F. Cordaro, “Optical properties of zinc aluminate, zinc gallate, and zinc aluminogallate spinels,” J. Am. Ceram. Soc. 81, 649-654 (1998).

J. Appl. Phys (1)

G. Kaur, S. K. Singh, and S. B. Rai, “Eu3+ and Yb3+ codoped Gd2O3 single phase nanophosphor: An enhanced monochromatic red emission through cooperative upconversion and downconversion,” J. Appl. Phys. 107, 073514-6 (2010).

J. Chem. Phys. (1)

F. Lahoz, I. R. Martin, J. Mendez-Ramos, and P. Nunez, “Dopant distribution in a Tm3+ -Yb3+ codoped silica based glass ceramic: An infrared-laser induced upconversion study,” J. Chem. Phys. 120, 6180-6190 (2004).
[Crossref]

J. Fluor. Chem (1)

K. Shinozaki, A. Noji, T. Honma, and T. Komatsu, “Morphology and photoluminescence properties of Er3+-doped CaF2 nanocrystals patterned by laser irradiation in oxyfluoride glasses,” J. Fluor. Chem. 145, 81-87 (2013).
[Crossref]

J. Fluor. Chem. (1)

A. J. Stevenson, H. Serier-Brault, P. Gredin, and M. Mortier, “Fluoride materials for optical applications: Single crystals, ceramics, glasses, and glass-ceramics,” J. Fluor. Chem. 132, 1165-1173 (2011).
[Crossref]

J. Lumin. (2)

J.-P. R. Wells and R. J. Reeves, “Up-conversion fluorescence of Eu3+ doped alkaline earth fluoride crystals,” J. Lumin. 66-67, 219-223 (1995).
[Crossref]

S.-A. Song, D.-S. Kim, H.-M. Jeong, and K.-S. Lim, “Upconversion in Nd-Tm-Yb triply doped oxyfluoride glass-ceramics containing CaF2 nanocrystals,” J. Lumin. 152, 75-78 (2014).
[Crossref]

J. Phys.: Condens. Matter. (1)

A. S. S. de Camargo, L. A. O. Nunes, J. F. Silva, A. C. F. M. Costa, B. S. Barros, J. E. C. Silva, G. F. de Sa, and S. Alves Jr, “Efficient green and red upconversion emissions in Er3+/Yb3+ co-doped ZnAl2O4 phosphor obtained by combustion reaction,” J. Phys.: Condens. Matter. 19, 246209-4 (2007).

Nanomaterials (1)

Y. Shang, S. Hao, C. Yang, and G. Chen, “Enhancing solar cell efficiency using photon upconversion materials,” Nanomaterials 5, 1782-1809 (2015).
[Crossref]

Opt. Mater. (3)

Y. Dwivedi, D. K. Rai, and S. B. Rai, “Stokes and anti-Stokes luminescence from Eu/Yb:BaB4O7 nanocrystals,” Opt. Mater. 32, 913-919 (2010).
[Crossref]

S. Gonzalez-Perez, I. R. Martin, and P. Haro-Gonzalez, “Local devitrification on an oxyfluoride glass doped with Ho3+ ions under Argon laser irradiation,” Opt. Mater. 31, 1373-1375 (2009).
[Crossref]

G. M. Arzumanyan, E. A. Kuznetsov, A. A. Zhilin, O. S. Dymshits, D. V. Shemchuk, I. P. Alekseeva, A. V. Mudryi, V. D. Zhivulko, and O. M. Borodavchenko, “Photolumine-scence of transparent glass-ceramics based on ZnO nanocrystals and co-doped with Eu3+, Yb3+ ions,” Opt. Mater. 62, 666-672 (2016)
[Crossref]

Phys. Rev. (1)

A. L. Patterson, “The Scherrer formula for x-ray particle size determination,” Phys. Rev. 56, 978-981 (1939).
[Crossref]

Spectrochim. Acta A (1)

A. Bahadur, Y. Dwivedi, and S. B. Rai, “Structural and spectroscopic diagnosis of Eu:ZnO and Eu:Yb:ZnO glass and ceramics,” Spectrochim. Acta A 91, 217-221 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.