Abstract

In this communication, we present an expression to determine thermal lensing in isotropic materials. The heat equation is analytically solved when a Gaussian spatial laser beam profile is introduced to a cylindrical geometry of optics using a complete set of Bessel functions. This expression permits explicit calculation of variation of focal length induced by thermal lensing and allows thermal effects for various material parameters on the optics. We applied our model to a high absorption material (Ti:sapphire) and also transparent material (thallium garnet or TGG) and found that the thermal lensing can be reduced more than 4 times by adjusting the laser beam waist and optics dimensions. Our analysis is completely general and applicable to any optical system.

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription