Abstract

Combined LIBS-Raman spectroscopy has been widely studied, due to its complementary capabilities as an elemental analyzer that can acquire signals of atoms, ions, and molecules. In this study, the classification of polymorphs was performed by laser-induced breakdown spectroscopy (LIBS) to overcome the limitation in molecular analysis; the results were verified by Raman spectroscopy. LIBS signals of the CaCO3 polymorphs calcite and aragonite, and CaSO4·2H2O (gypsum) and CaSO4 (anhydrite), were acquired using a Nd:YAG laser (532 nm, 6 ns). While the molecular study was performed using Raman spectroscopy, LIBS could also provide sufficient key data for classifying samples containing different molecular densities and structures, using the peculiar signal ratio of 5s→4p for the orbital transition of two polymorphs that contain Ca. The basic principle was analyzed by electronic motion in plasma and electronic transition in atoms or ions. The key factors for the classification of polymorphs were the different electron quantities in the unit-cell volume of each sample, and the selection rule in electric-dipole transitions. The present work has extended the capabilities of LIBS in molecular analysis, as well as in atomic and ionic analysis.

PDF Article

References

  • View by:
  • |

  1. N. Prieto-Taboada, O. Gómez-Laserna, I. Martínez-Arkarazo, M. Á. Olazabal, and J. M. MadariagaRaman spectra of the different phases in the CaSO4-H2O systemAnal. Chem.201486201013110137
  2. M. D. Dyar, E. Breves, E. Jawin, G. Marchand, M. Nelms, V. O’Connor, S. Peel, Y. Rothstein, E. C. Sklute, and M. D. LaneWhat lurks in the martian rocks and soil? investigations of sulfates, phosphates, and perchlorates. Mössbauer parameters of iron in sulfate mineralsAm. Mineral.20139811-1219431965
  3. K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, and D. AnglosThe application of LIBS for the analysis of archaeological ceramic and metal artifactsAppl. Surf. Sci.2002197156163
  4. F. C. D. Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. MiziolekLaser-induced breakdown spectroscopy analysis of energetic materialsAppl. Opt.2003423061486152
  5. A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. FerrisCharacterization of Laser-Induced Breakdown Spectroscopy (LIBS) for application to space explorationAppl. Spectrosc.2000543331340
  6. F. Rull, J. Martinez-Frias, A. Sansano, J. Medina, and H. G. M. EdwardsComparative micro-Raman study of the Nakhla and Vaca Muerta meteoritesJ. Raman Spectrosc.2004356497503
  7. A. Wang, J. J. Freeman, B. L. Jolliff, and I.-M. ChouSulfates on Mars: A systematic Raman spectroscopic study of hydration states of magnesium sulfatesGeochim. Cosmochim. Acta2006702461186135
  8. R. J. HemleyPressure dependence of Raman spectra of SiO2 Polymorphs: α-quartz, coesite, and stishoviteHigh-Pressure Res. Miner. Phys.1987347
  9. M. Hoehse, D. Mory, S. Florek, F. Weritz, I. Gornushkin, and U. PanneA combined laser-induced breakdown and Raman spectroscopy Echelle system for elemental and molecular microanalysisSpectrochim. Acta Part B: At. Spectrosc.2009641112191227
  10. R. Bruder, V. Detalle, and C. CoupryAn example of the complementarity of laser-induced breakdown spectroscopy and Raman microscopy for wall painting pigments analysisJ. Raman Spectrosc.2007387909915
  11. A. Giakoumaki, I. Osticioli, and D. AnglosSpectroscopic analysis using a hybrid LIBS-Raman systemAppl. Phys. A2006834537541
  12. J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. LasernaSimultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platformAnal. Chem.201082413891400
  13. J. Moros, J. A. Lorenzo, and J. J. LasernaStandoff detection of explosives: critical comparison for ensuing options on Raman spectroscopy-LIBS sensor fusionAnal. Bioanal. Chem.20114001033533365
  14. S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. CleggCombined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dustSpectrochim. Acta Part A: Mol. Biomol. Spectrosc.200768410361045
  15. G. B. Courreges-Lacoste, B. Ahlers, and F. R. PérezCombined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to MarsSpectrochim. Acta Part A: Mol. Biomol. Spectrosc.200768410231028
  16. A. Frebel, J. E. Norris, W. Aoki, S. Honda, M. S. Bessell, M. Takada-Hidai, T. C. Beers, and N. ChristliebChemical abundance analysis of the extremely metal-poor star HE 1300 + 0157Astrophys. J.20076581534552
  17. R. Cayrel, E. Depagne, M. Spite, V. Hill, F. Spite, P. François, B. Plez, T. Beers, F. Primas, J. Andersen, B. Barbuy, P. Bonifacio, P. Molaro, and B. NordströmFirst stars V - Abundance patterns from C to Zn and supernova yields in the early GalaxyAstron. Astrophys.2004416311171138
  18. B Emmoth, M. Braun, J. Bromander, and I. MartinsonLifetimes of excited levels in Ca I - Ca IIIPhys. Scr.1975121-27579
  19. J. E. Stalnaker, Y. L. Coq, T. M. Fortier, S. A. Diddams, C. W. Oates, and L. HollbergMeasurement of excited-state transitions in cold calcium atoms by direct femtosecond frequency-comb spectroscopyPhys. Rev. A2007754040502
  20. L. Pasternack, D. R. Yarkony, P. J. Dagdigian, and D. M. SilverExperimental and theoretical study of the Ca I 4s3d 1D-4s2 1S and 4s4p 3P1-4s2 1S forbidden transitionsJ. Phys. B: At. Mol. Phys.1980131122312241
  21. N. H. D. Leeuw and S. C. ParkerSurface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite: an atomistic approachJ. Phys. Chem. B19981021629142922
  22. A. Pavese, M. Catti, G. D. Price, and R. A. JacksonInteratomic potentials for CaCO3 polymorphs (calcite and aragonite), fitted to elastic and vibrational dataPhys. Chem. of Miner.19921928087
  23. B. Xu and K. M. PoduskaLinking crystal structure with temperature-sensitive vibrational modes in calcium carbonate mineralsPhys. Chem. Chem. Phys.201416331763417639
  24. David Barthelmy(http://webmineral.com/, (1997-2014)
  25. Hudson Institute of Mineralogy(http://www.mindat.org/), (1993-2015)
  26. The University of Liverpool(http://www.chemtube3d.com/solidstate/SS-CaCO3.htm), (2008-2015)
  27. J. Liu, M. M. Ossowski, J. R. Hardy, C. Duan, and W. N. MeiSimulation of structural transformation in aragonite CaCO3AIP Conference Proceedings2000
  28. F. M. Hossain, G. E. Murch, I. V. Belova, and B. D. TurnerElectronic, optical and bonding properties of CaCO3 calciteSolid State Commun.20091492912011203
  29. J. Perić, M. Vučak, R. Krstulović, L. Brečević, and D. KraljPhase transformation of calcium carbonate polymorphsThermochim. Acta1996277175186
  30. NIST(http://physics.nist.gov/PhysRefData/Handbook/Tables/calciumtable5.htm), (2010-2015)
  31. E. S. A. SeifGeotechnical characteristics of anhydrite/gypsum transformation in the middle miocene evaporites, red sea coast, EgyptArabian J. Sci. Eng.2014391247260
  32. G. Azimi and V. G. PapangelakisMechanism and kinetics of gypsum-anhydrite transformation in aqueous electrolyte solutionsHydrometallurgy20111081122129

Other (32)

N. Prieto-Taboada, O. Gómez-Laserna, I. Martínez-Arkarazo, M. Á. Olazabal, and J. M. MadariagaRaman spectra of the different phases in the CaSO4-H2O systemAnal. Chem.201486201013110137

M. D. Dyar, E. Breves, E. Jawin, G. Marchand, M. Nelms, V. O’Connor, S. Peel, Y. Rothstein, E. C. Sklute, and M. D. LaneWhat lurks in the martian rocks and soil? investigations of sulfates, phosphates, and perchlorates. Mössbauer parameters of iron in sulfate mineralsAm. Mineral.20139811-1219431965

K. Melessanaki, M. Mateo, S. C. Ferrence, P. P. Betancourt, and D. AnglosThe application of LIBS for the analysis of archaeological ceramic and metal artifactsAppl. Surf. Sci.2002197156163

F. C. D. Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. MiziolekLaser-induced breakdown spectroscopy analysis of energetic materialsAppl. Opt.2003423061486152

A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. FerrisCharacterization of Laser-Induced Breakdown Spectroscopy (LIBS) for application to space explorationAppl. Spectrosc.2000543331340

F. Rull, J. Martinez-Frias, A. Sansano, J. Medina, and H. G. M. EdwardsComparative micro-Raman study of the Nakhla and Vaca Muerta meteoritesJ. Raman Spectrosc.2004356497503

A. Wang, J. J. Freeman, B. L. Jolliff, and I.-M. ChouSulfates on Mars: A systematic Raman spectroscopic study of hydration states of magnesium sulfatesGeochim. Cosmochim. Acta2006702461186135

R. J. HemleyPressure dependence of Raman spectra of SiO2 Polymorphs: α-quartz, coesite, and stishoviteHigh-Pressure Res. Miner. Phys.1987347

M. Hoehse, D. Mory, S. Florek, F. Weritz, I. Gornushkin, and U. PanneA combined laser-induced breakdown and Raman spectroscopy Echelle system for elemental and molecular microanalysisSpectrochim. Acta Part B: At. Spectrosc.2009641112191227

R. Bruder, V. Detalle, and C. CoupryAn example of the complementarity of laser-induced breakdown spectroscopy and Raman microscopy for wall painting pigments analysisJ. Raman Spectrosc.2007387909915

A. Giakoumaki, I. Osticioli, and D. AnglosSpectroscopic analysis using a hybrid LIBS-Raman systemAppl. Phys. A2006834537541

J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. LasernaSimultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platformAnal. Chem.201082413891400

J. Moros, J. A. Lorenzo, and J. J. LasernaStandoff detection of explosives: critical comparison for ensuing options on Raman spectroscopy-LIBS sensor fusionAnal. Bioanal. Chem.20114001033533365

S. K. Sharma, A. K. Misra, P. G. Lucey, R. C. Wiens, and S. M. CleggCombined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dustSpectrochim. Acta Part A: Mol. Biomol. Spectrosc.200768410361045

G. B. Courreges-Lacoste, B. Ahlers, and F. R. PérezCombined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to MarsSpectrochim. Acta Part A: Mol. Biomol. Spectrosc.200768410231028

A. Frebel, J. E. Norris, W. Aoki, S. Honda, M. S. Bessell, M. Takada-Hidai, T. C. Beers, and N. ChristliebChemical abundance analysis of the extremely metal-poor star HE 1300 + 0157Astrophys. J.20076581534552

R. Cayrel, E. Depagne, M. Spite, V. Hill, F. Spite, P. François, B. Plez, T. Beers, F. Primas, J. Andersen, B. Barbuy, P. Bonifacio, P. Molaro, and B. NordströmFirst stars V - Abundance patterns from C to Zn and supernova yields in the early GalaxyAstron. Astrophys.2004416311171138

B Emmoth, M. Braun, J. Bromander, and I. MartinsonLifetimes of excited levels in Ca I - Ca IIIPhys. Scr.1975121-27579

J. E. Stalnaker, Y. L. Coq, T. M. Fortier, S. A. Diddams, C. W. Oates, and L. HollbergMeasurement of excited-state transitions in cold calcium atoms by direct femtosecond frequency-comb spectroscopyPhys. Rev. A2007754040502

L. Pasternack, D. R. Yarkony, P. J. Dagdigian, and D. M. SilverExperimental and theoretical study of the Ca I 4s3d 1D-4s2 1S and 4s4p 3P1-4s2 1S forbidden transitionsJ. Phys. B: At. Mol. Phys.1980131122312241

N. H. D. Leeuw and S. C. ParkerSurface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite: an atomistic approachJ. Phys. Chem. B19981021629142922

A. Pavese, M. Catti, G. D. Price, and R. A. JacksonInteratomic potentials for CaCO3 polymorphs (calcite and aragonite), fitted to elastic and vibrational dataPhys. Chem. of Miner.19921928087

B. Xu and K. M. PoduskaLinking crystal structure with temperature-sensitive vibrational modes in calcium carbonate mineralsPhys. Chem. Chem. Phys.201416331763417639

David Barthelmy(http://webmineral.com/, (1997-2014)

Hudson Institute of Mineralogy(http://www.mindat.org/), (1993-2015)

The University of Liverpool(http://www.chemtube3d.com/solidstate/SS-CaCO3.htm), (2008-2015)

J. Liu, M. M. Ossowski, J. R. Hardy, C. Duan, and W. N. MeiSimulation of structural transformation in aragonite CaCO3AIP Conference Proceedings2000

F. M. Hossain, G. E. Murch, I. V. Belova, and B. D. TurnerElectronic, optical and bonding properties of CaCO3 calciteSolid State Commun.20091492912011203

J. Perić, M. Vučak, R. Krstulović, L. Brečević, and D. KraljPhase transformation of calcium carbonate polymorphsThermochim. Acta1996277175186

NIST(http://physics.nist.gov/PhysRefData/Handbook/Tables/calciumtable5.htm), (2010-2015)

E. S. A. SeifGeotechnical characteristics of anhydrite/gypsum transformation in the middle miocene evaporites, red sea coast, EgyptArabian J. Sci. Eng.2014391247260

G. Azimi and V. G. PapangelakisMechanism and kinetics of gypsum-anhydrite transformation in aqueous electrolyte solutionsHydrometallurgy20111081122129

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.