Abstract

An approach based on an integrated photonic Ti:LiNbO3 Y branch has been proposed, designed, and analyzed for the microwave instantaneous frequency measurement (IFM). By designing the Y branch with length L = 6545 μm and refractive index NTE - NTM = 0.0764, a complementary optical filter with free spectral range (FSR) of 600 GHz is constituted, which results in a maximum measureable frequency of 300 GHz being obtained. Theoretical analysis on the temperature stability of the Ti:LiNbO3 Y branch shows that the FSR variation of the complementary filter is 0.3% for the temperature change of 100 K, which indicates that the IFM approach will have a better stability. All these results demonstrate that the proposed IFM approach has potential capability to be used for the increasingly higher microwave IFM with better stability.

PDF Article

References

  • View by:
  • |

  1. D. M. PozarMicrowave EngineeringJohn Wiley & SonsNJ, USA2007
  2. P. W. EastFifty years of instantaneous frequency measurementIET Radar. Sonar Navig.20126112122
  3. J. Capmany and D. NovakMicrowave photonics combines two worldsNat. Photon.20071319330
  4. L. V. T. Nguyen and D. B. HunterA photonic technique for microwave frequency measurementIEEE Photon. Technol. Lett.20061811881190
  5. Y. Wang, J. Ni, H. Chi, X. Zhang, S. Zheng, and X. JinPhotonic instantaneous microwave frequency measurement based on two different phase modulation to intensity modulation conversionsOpt. Commun.201128439283932
  6. H. Emamiand and M. AshourianImproved dynamic range microwave photonic instantaneous frequency measurement based on four-wave mixingIEEE Trans. Microw. Theory Tech.20146224622470
  7. H. Chi, X. Zou, and J. YaoAn approach to the measurement of microwave frequency based on optical power monitoringIEEE Photon. Technol. Lett.20082012491251
  8. X. Zou, H. Chi, and J. YaoMicrowave frequency measurement based on optical power monitoring using a complementary optical filter pairIEEE Trans. Microw. Theory Tech.200957505511
  9. J. Zhang, X. Yang, C. Zhu, Z. Zhao, C. Li, and Y. LiInstantaneous microwave frequency measurement using an asymmetric integrated optical waveguide Mach-Zenhder interferometer (AMZI)Optik2018169203207
  10. T. A. Nguyen, E. H. W. Chan, and R. A. MinasianInstantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping techniqueOpt. Lett.20143924192422
  11. L. V. T. NguyenMicrowave photonic technique for frequency measurement of simultaneous signalsIEEE Photon. Technol. Lett.200921642644
  12. D. MarpaungOn-chip photonic-assisted instantaneous microwave frequency measurement systemIEEE Photon. Technol. Lett.201325837840
  13. L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. DongPhotonic measurement of microwave frequency using a silicon microdisk resonatorOpt. Commun.2015335266270
  14. L. Liu, H. Qiu, Z. Chen, and Z. YuPhotonic measurement of microwave frequency with low-error based on an optomechanical microring resonatorIEEE Photon. J.201795503611
  15. L. Liu, W. Xue, and J. YuePhotonic approach for microwave frequency measurement using a silicon microring resonatorIEEE Photon. Technol. Lett.201931153156
  16. M. Pagani, B. Morrison, Y. Zhang, A. Casas-Bedoya, T. Aalto, M. Harjanne, M. Kapulainen, B. J. Eggleton, and D. MarpaungLow-error and broadband microwave frequency measurement in a silicon chipOptica20152751756
  17. B. Zhu, W. Zhang, S. Pan, and J. YaoHigh-sensitivity instantaneous microwave frequency measurement based on a silicon photonic integrated fano resonatorJ. Lightwave Technol.20193725272533
  18. J. S. Fandiño and P. MuñozPhotonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach-Zehnder interferometer filterOpt. Lett.20133843164319
  19. S. Fouchet, A. Carenco, R. Guglielmi, and L. RiviereWavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parametersJ. Lightwave Technol.19875700708
  20. E. Strake, G. P. Bava, and I. MontrossetGuided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with the scalar finite-element methodJ. Lightwave Technol.1988611261135
  21. J. P. Salvestrini, L. Guilbert, M. Fontana, M. Abarkan, and S. GilleAnalysis and control of the DC drift in LiNbO3-based Mach-Zehnder modulatorsJ. Lightwave Technol.20112915221534
  22. K. H. Hellwege and A. M. HellwegeLandolt-BornsteinNumerical Data and Functional Relationships in Science and Technology (New Series Volume III/16a) Landolt-Bornstein, edsSpringer-VerlagNY, USA1981Ferroelectrics and Related Substances: Oxides
  23. C. H. Bulmer, W. K. Burns, and S. C. HiserPyroelectric effects in LiNbO3 channel-waveguide devicesAppl. Phys. Lett.19864810361038

Other (23)

D. M. PozarMicrowave EngineeringJohn Wiley & SonsNJ, USA2007

P. W. EastFifty years of instantaneous frequency measurementIET Radar. Sonar Navig.20126112122

J. Capmany and D. NovakMicrowave photonics combines two worldsNat. Photon.20071319330

L. V. T. Nguyen and D. B. HunterA photonic technique for microwave frequency measurementIEEE Photon. Technol. Lett.20061811881190

Y. Wang, J. Ni, H. Chi, X. Zhang, S. Zheng, and X. JinPhotonic instantaneous microwave frequency measurement based on two different phase modulation to intensity modulation conversionsOpt. Commun.201128439283932

H. Emamiand and M. AshourianImproved dynamic range microwave photonic instantaneous frequency measurement based on four-wave mixingIEEE Trans. Microw. Theory Tech.20146224622470

H. Chi, X. Zou, and J. YaoAn approach to the measurement of microwave frequency based on optical power monitoringIEEE Photon. Technol. Lett.20082012491251

X. Zou, H. Chi, and J. YaoMicrowave frequency measurement based on optical power monitoring using a complementary optical filter pairIEEE Trans. Microw. Theory Tech.200957505511

J. Zhang, X. Yang, C. Zhu, Z. Zhao, C. Li, and Y. LiInstantaneous microwave frequency measurement using an asymmetric integrated optical waveguide Mach-Zenhder interferometer (AMZI)Optik2018169203207

T. A. Nguyen, E. H. W. Chan, and R. A. MinasianInstantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping techniqueOpt. Lett.20143924192422

L. V. T. NguyenMicrowave photonic technique for frequency measurement of simultaneous signalsIEEE Photon. Technol. Lett.200921642644

D. MarpaungOn-chip photonic-assisted instantaneous microwave frequency measurement systemIEEE Photon. Technol. Lett.201325837840

L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, and J. DongPhotonic measurement of microwave frequency using a silicon microdisk resonatorOpt. Commun.2015335266270

L. Liu, H. Qiu, Z. Chen, and Z. YuPhotonic measurement of microwave frequency with low-error based on an optomechanical microring resonatorIEEE Photon. J.201795503611

L. Liu, W. Xue, and J. YuePhotonic approach for microwave frequency measurement using a silicon microring resonatorIEEE Photon. Technol. Lett.201931153156

M. Pagani, B. Morrison, Y. Zhang, A. Casas-Bedoya, T. Aalto, M. Harjanne, M. Kapulainen, B. J. Eggleton, and D. MarpaungLow-error and broadband microwave frequency measurement in a silicon chipOptica20152751756

B. Zhu, W. Zhang, S. Pan, and J. YaoHigh-sensitivity instantaneous microwave frequency measurement based on a silicon photonic integrated fano resonatorJ. Lightwave Technol.20193725272533

J. S. Fandiño and P. MuñozPhotonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach-Zehnder interferometer filterOpt. Lett.20133843164319

S. Fouchet, A. Carenco, R. Guglielmi, and L. RiviereWavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parametersJ. Lightwave Technol.19875700708

E. Strake, G. P. Bava, and I. MontrossetGuided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with the scalar finite-element methodJ. Lightwave Technol.1988611261135

J. P. Salvestrini, L. Guilbert, M. Fontana, M. Abarkan, and S. GilleAnalysis and control of the DC drift in LiNbO3-based Mach-Zehnder modulatorsJ. Lightwave Technol.20112915221534

K. H. Hellwege and A. M. HellwegeLandolt-BornsteinNumerical Data and Functional Relationships in Science and Technology (New Series Volume III/16a) Landolt-Bornstein, edsSpringer-VerlagNY, USA1981Ferroelectrics and Related Substances: Oxides

C. H. Bulmer, W. K. Burns, and S. C. HiserPyroelectric effects in LiNbO3 channel-waveguide devicesAppl. Phys. Lett.19864810361038

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.