References
- View by:
- Article Order
- |
- Publication
-
I. N. Papadopoulos, S. Farahi, C. Moser, and D. PsaltisHigh-resolution, lensless endoscope based on digital scanning through a multimode optical fiberBiomed. Opt. Express20134260270
-
T. Čižmár and K. DholakiaExploiting multimode waveguides for pure fibre-based imagingNat. Commun.201231027
-
Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. ChoiScanner-free and wide-field endoscopic imaging by using a single multimode optical fiberPhys. Rev. Lett.2012109203901
-
K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. CoudercSpatial beam self-cleaning in multimode fibresNat. Photonics201711237241
-
M. Hughes, T. P. Chang, and G.-Z. YangFiber bundle endocytoscopyBiomed. Opt. Express2013427812794
-
V. Tsvirkun, S. Sivankutty, G. Bouwmans, O. Katz, E. R. Andresen, and H. RigneaultWidefield lensless endoscopy with a multicore fiberOpt. Lett.20164147714774
-
A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. KatzWidefield lensless imaging through a fiber bundle via speckle correlationsOpt. Express2016241683516855
-
N. Stasio, C. Moser, and D. PsaltisCalibration-free imaging through a multicore fiber using speckle scanning microscopyOpt. Lett.20164130783081
-
N. Stasio, D. B. Conkey, C. Moser, and D. PsaltisLight control in a multicore fiber using the memory effectOpt. Express2015233053230544
-
P. Fan, T. Zhao, and L. SuDeep learning the high variability and randomness inside multimode fibersOpt. Express2019272024120258
-
P. Caramazza, O. Moran, R. Murray-Smith, and D. FaccioTransmission of natural scene images through a multimode fibreNat. Commun.2019102029
-
N. Borhani, E. Kakkava, C. Moser, and D. PsaltisLearning to see through multimode fibersOptica20185960966
-
R. Horisaki, R. Takagi, and J. TanidaLearning-based imaging through scattering mediaOpt. Express2016241373813743
-
K. Wang, J. Dou, Q. Kemao, J. Di, and J. ZhaoY-Net: a one-to-two deep learning framework for digital holographic reconstructionOpt. Lett.20194447654768
-
H. Wang, M. Lyu, and G. SitueHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstructionOpt. Express2018262260322614
-
T. Nguyen, V. Bui, V. Lam, C. B. Raub, L.-C. Chang, and G. NehmetallahAutomatic phase aberration compensation for digital holographic microscopy based on deep learning background detectionOpt. Express2017251504315057
-
Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Günaydin, X. Lin, and A. OzcanExtended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recoveryOptica20185704710
-
Y. L. Cun, Y. Bengio, and G. HintonDeep learningNature2015521436444
-
S. Aisawa, K. Noguchi, and T. MatsumotoRemote image classification through multimode optical fiber using a neural networkOpt. Lett.199116645647
-
S. Li, M. Deng, J. Lee, A. Sinha, and G. BarbastathisImaging through glass diffusers using densely connected convolutional networksOptica20185803813
-
X. Yuan and Y. PuParallel lensless compressive imaging via deep convolutional neural networksOpt. Express20182619621977
-
C. Park, C. C. Took, and J.-K. SeongMachine learning in biomedical engineeringBiomed. Eng. Lett.2018813
-
C. M. Sandino, J. Y. Cheng, F. Chen, M. Mardani, J. M. Pauly, and S. S. VasanawalaCompressed sensing: from research to clinical practice with deep neural networks: Shortening Scan Times for Magnetic Resonance ImagingIEEE Signal Process. Mag.202037117127
-
K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson, T. Pock, and F. KnollLearning a variational network for reconstruction of accelerated MRI dataMagn. Reson. Med.20187930553071
-
O. Ronneberger, P. Fischer, and T. BroxU-net: convolutional networks for biomedical image segmentationProc. Medical Image Computing and Computer-Assisted InterventionMunich, Germany2015Oct.234241
-
G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. WeinbergerDensely connected convolutional networksProc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)Honolulu, USA2017Jul.47004708
-
P. D. Kingma and J. BaAdam: a method for stochastic optimizationProc. the 3rd International Conference for Learning RepresentationsSan Diego, USA2015May
-
A. Kendall and Y. GalWhat uncertainties do we need in Bayesian deep learning for computer vision?Proc. Neural Information Processing SystemsCA, USA2017Dec.55745584
-
B. Li, Y. Liu, and X. WangGradient harmonized single-stage detectorProc. AAAI Conference on Artificial IntelligenceHonolulu, USA2019Jan.85778584
-
L. Wu, W. Fan, Z. Chen, and J. PuFocusing and polarized modulation of a laser passing through multi-core fiberOpt. Rev.201926531536
-
Y. L. Cun, C. Cortes, and C. J. C. BurgesTHE MNIST DATABASE of handwritten digits (Y. L. Cun, C. Cortes, and C. J. C. Burges)http://yann.lecun.com/exdb/mnist/Accessed date: 2019.06.13
-
Y. Li, Y. Xue, and L. TianDeep speckle correlation: a deep learning approach toward scalable imaging through scattering mediaOptica2018511811190
Other (32)
I. N. Papadopoulos, S. Farahi, C. Moser, and D. PsaltisHigh-resolution, lensless endoscope based on digital scanning through a multimode optical fiberBiomed. Opt. Express20134260270
T. Čižmár and K. DholakiaExploiting multimode waveguides for pure fibre-based imagingNat. Commun.201231027
Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. ChoiScanner-free and wide-field endoscopic imaging by using a single multimode optical fiberPhys. Rev. Lett.2012109203901
K. Krupa, A. Tonello, B. M. Shalaby, M. Fabert, A. Barthélémy, G. Millot, S. Wabnitz, and V. CoudercSpatial beam self-cleaning in multimode fibresNat. Photonics201711237241
M. Hughes, T. P. Chang, and G.-Z. YangFiber bundle endocytoscopyBiomed. Opt. Express2013427812794
V. Tsvirkun, S. Sivankutty, G. Bouwmans, O. Katz, E. R. Andresen, and H. RigneaultWidefield lensless endoscopy with a multicore fiberOpt. Lett.20164147714774
A. Porat, E. R. Andresen, H. Rigneault, D. Oron, S. Gigan, and O. KatzWidefield lensless imaging through a fiber bundle via speckle correlationsOpt. Express2016241683516855
N. Stasio, C. Moser, and D. PsaltisCalibration-free imaging through a multicore fiber using speckle scanning microscopyOpt. Lett.20164130783081
N. Stasio, D. B. Conkey, C. Moser, and D. PsaltisLight control in a multicore fiber using the memory effectOpt. Express2015233053230544
P. Fan, T. Zhao, and L. SuDeep learning the high variability and randomness inside multimode fibersOpt. Express2019272024120258
P. Caramazza, O. Moran, R. Murray-Smith, and D. FaccioTransmission of natural scene images through a multimode fibreNat. Commun.2019102029
N. Borhani, E. Kakkava, C. Moser, and D. PsaltisLearning to see through multimode fibersOptica20185960966
R. Horisaki, R. Takagi, and J. TanidaLearning-based imaging through scattering mediaOpt. Express2016241373813743
K. Wang, J. Dou, Q. Kemao, J. Di, and J. ZhaoY-Net: a one-to-two deep learning framework for digital holographic reconstructionOpt. Lett.20194447654768
H. Wang, M. Lyu, and G. SitueHoloNet: a learning-based end-to-end approach for in-line digital holographic reconstructionOpt. Express2018262260322614
T. Nguyen, V. Bui, V. Lam, C. B. Raub, L.-C. Chang, and G. NehmetallahAutomatic phase aberration compensation for digital holographic microscopy based on deep learning background detectionOpt. Express2017251504315057
Y. Wu, Y. Rivenson, Y. Zhang, Z. Wei, H. Günaydin, X. Lin, and A. OzcanExtended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recoveryOptica20185704710
Y. L. Cun, Y. Bengio, and G. HintonDeep learningNature2015521436444
S. Aisawa, K. Noguchi, and T. MatsumotoRemote image classification through multimode optical fiber using a neural networkOpt. Lett.199116645647
S. Li, M. Deng, J. Lee, A. Sinha, and G. BarbastathisImaging through glass diffusers using densely connected convolutional networksOptica20185803813
X. Yuan and Y. PuParallel lensless compressive imaging via deep convolutional neural networksOpt. Express20182619621977
C. Park, C. C. Took, and J.-K. SeongMachine learning in biomedical engineeringBiomed. Eng. Lett.2018813
C. M. Sandino, J. Y. Cheng, F. Chen, M. Mardani, J. M. Pauly, and S. S. VasanawalaCompressed sensing: from research to clinical practice with deep neural networks: Shortening Scan Times for Magnetic Resonance ImagingIEEE Signal Process. Mag.202037117127
K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson, T. Pock, and F. KnollLearning a variational network for reconstruction of accelerated MRI dataMagn. Reson. Med.20187930553071
O. Ronneberger, P. Fischer, and T. BroxU-net: convolutional networks for biomedical image segmentationProc. Medical Image Computing and Computer-Assisted InterventionMunich, Germany2015Oct.234241
G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. WeinbergerDensely connected convolutional networksProc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)Honolulu, USA2017Jul.47004708
P. D. Kingma and J. BaAdam: a method for stochastic optimizationProc. the 3rd International Conference for Learning RepresentationsSan Diego, USA2015May
A. Kendall and Y. GalWhat uncertainties do we need in Bayesian deep learning for computer vision?Proc. Neural Information Processing SystemsCA, USA2017Dec.55745584
B. Li, Y. Liu, and X. WangGradient harmonized single-stage detectorProc. AAAI Conference on Artificial IntelligenceHonolulu, USA2019Jan.85778584
L. Wu, W. Fan, Z. Chen, and J. PuFocusing and polarized modulation of a laser passing through multi-core fiberOpt. Rev.201926531536
Y. L. Cun, C. Cortes, and C. J. C. BurgesTHE MNIST DATABASE of handwritten digits (Y. L. Cun, C. Cortes, and C. J. C. Burges)http://yann.lecun.com/exdb/mnist/Accessed date: 2019.06.13
Y. Li, Y. Xue, and L. TianDeep speckle correlation: a deep learning approach toward scalable imaging through scattering mediaOptica2018511811190
Cited By
OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.