Abstract

A system for continuous-wave coherent Doppler lidar (CW lidar), made up of all-fiber structures and a coaxial transmission telescope, was set up for wind measurement in Hefei (31.84 N, 117.27 E), Anhui province of China. The lidar uses a fiber laser as a light source at a wavelength of 1.55 μm, and focuses the laser beam on a location 80 m away from the telescope. Using the CW lidar, radial wind measurement was carried out. Subsequently, the spectra of the atmospheric backscattered signal were analyzed. We tested the noise and obtained the lower limit of wind velocity as 0.721 m/s, through the Rayleigh criterion. According to the number of Doppler peaks in the radial wind spectrum, a classification retrieval algorithm (CRA) combining a Gaussian fitting algorithm and a spectral centroid algorithm is designed to estimate wind velocity. Compared to calibrated pulsed coherent wind lidar, the correlation coefficient for the wind velocity is 0.979, with a standard deviation of 0.103 m/s. The results show that CW lidar offers satisfactory performance and the potential for application in wind measurement.

PDF Article

References

  • View by:
  • |

  1. C. HillCoherent focused lidars for Doppler sensing of aerosols and windRemote Sens.201810466
  2. X. D. Jia, D. S. Sun, Z. F. Shu, F. F. Zhang, and H. Y. XiaOptimal design of the telescope in coherent lidar and detection performance analysisATCA Opt. Sin.2015350301001
  3. E. Brinkmeyer and T. WaterholterContinuous wave synthetic low-coherence wind sensing Lidar: motionless measurement system with subsequent numerical range scanningOpt. Express20132118721897
  4. P. J. Rodrigo, T. F. Q. Iversen, Q. Hu, and C. PedersonDiode laser lidar wind velocity sensor using a liquid-crystal retarder for non-mechanical beam-steeringOpt. Express2014222667426679
  5. T. Beuth, M. Fox, and W. StorkParameterization of a geometrical reaction time model for two beam nacelle lidarsProc. SPIE2015961296120J
  6. M. Pitter, E. B. des Roziers, and J. MedleyPerformance stability of ZephIR in high motion environments: floating and turbine mountedProc. EWEA Annual EventBarcelona, Spain2014113
  7. W. Barker, M. Harris, M. Pitter, E. B. des Roziers, J. Medley, and C. SlingerLidar turbulence measurements for wind turbine selection studies: design turbulenceProc. EWEA Annual EventBarcelona, Spain2014169PO.ID
  8. Q. Hu, P. J. Rodrigo, and C. PedersenRemote wind sensing with a CW diode laser lidar beyond the coherence regimeOpt. Lett.20143948754878
  9. M. Harris, M. Hand, and A. WrightLidar for turbine control,” in National Renewable Energy Laboratory, Technical ReportGolden, USA2006Jan.TP500-39154
  10. R. G. Frehlich and M. J. KavayaCoherent laser radar performance for general atmospheric refractive turbulenceAppl. Opt.19913053255352
  11. E. Simley, L. Y. Pao, R. Frehlich, B. Jonkman, and N. KelleyAnalysis of light detection and ranging wind speed measurements for wind turbine controlWind Energy201417413433
  12. P. LindelöwFiber based coherent lidars for remote wind sensing, Ph. D. ThesisTechnical University of DenmarkDenmark2007
  13. R. Frehlich, M. H. Stephen, and S. W. HendersonCoherent Doppler lidar measurements of winds in the weak signal regimeAppl. Opt.19973634913499
  14. P. J. Rodrigo and C. PedersenReduction of phase-induced intensity noise in a fiber-based coherent Doppler lidar using polarization controlOpt. Express20101853205327
  15. S. W. Henderson, P. Gatt, D. Rees, and R. M. HuffakerT. Fujii and T. FukuchiLaser remote sensingCRC Press, Taylor & Francis GroupNew York, USA2005Chapter 7
  16. F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. BarbieriOvercoming the Rayleigh criterion limit with optical vorticesPhys. Rev. Lett.200697163903
  17. R. S. Hansen and C. PedersenAll semiconductor laser Doppler anemometer at 1.55 μmOpt. Express2008161828818295
  18. D. Hosseinzadeh and S. KrishnanOn the use of complementary spectral features for speaker recognitionEURASIP J. Adv. Signal Process.20072008258184
  19. J. S. Seo, M. Jin, S. I. Lee, D. Jang, S. J. Lee, and C. D. YooAudio fingerprinting based on normalized spectral sub-band centroidsProc. IEEE International Conference on Acoustics, Speech, and Signal ProcessingUSA2005Mar.213216
  20. W. Flores-Fuentes, M. Rivas-Lopez, O. Sergiyenko, F. F. Gonzalez-Navarrob, J. Rivera-Castillob, D. Hernandez-Balbuena, and J. C. Rodríguez-QuiñonezaCombined application of power spectrum centroid and support vector machines for measurement improvement in optical scanning systemsSignal Process.2014983751

Other (20)

C. HillCoherent focused lidars for Doppler sensing of aerosols and windRemote Sens.201810466

X. D. Jia, D. S. Sun, Z. F. Shu, F. F. Zhang, and H. Y. XiaOptimal design of the telescope in coherent lidar and detection performance analysisATCA Opt. Sin.2015350301001

E. Brinkmeyer and T. WaterholterContinuous wave synthetic low-coherence wind sensing Lidar: motionless measurement system with subsequent numerical range scanningOpt. Express20132118721897

P. J. Rodrigo, T. F. Q. Iversen, Q. Hu, and C. PedersonDiode laser lidar wind velocity sensor using a liquid-crystal retarder for non-mechanical beam-steeringOpt. Express2014222667426679

T. Beuth, M. Fox, and W. StorkParameterization of a geometrical reaction time model for two beam nacelle lidarsProc. SPIE2015961296120J

M. Pitter, E. B. des Roziers, and J. MedleyPerformance stability of ZephIR in high motion environments: floating and turbine mountedProc. EWEA Annual EventBarcelona, Spain2014113

W. Barker, M. Harris, M. Pitter, E. B. des Roziers, J. Medley, and C. SlingerLidar turbulence measurements for wind turbine selection studies: design turbulenceProc. EWEA Annual EventBarcelona, Spain2014169PO.ID

Q. Hu, P. J. Rodrigo, and C. PedersenRemote wind sensing with a CW diode laser lidar beyond the coherence regimeOpt. Lett.20143948754878

M. Harris, M. Hand, and A. WrightLidar for turbine control,” in National Renewable Energy Laboratory, Technical ReportGolden, USA2006Jan.TP500-39154

R. G. Frehlich and M. J. KavayaCoherent laser radar performance for general atmospheric refractive turbulenceAppl. Opt.19913053255352

E. Simley, L. Y. Pao, R. Frehlich, B. Jonkman, and N. KelleyAnalysis of light detection and ranging wind speed measurements for wind turbine controlWind Energy201417413433

P. LindelöwFiber based coherent lidars for remote wind sensing, Ph. D. ThesisTechnical University of DenmarkDenmark2007

R. Frehlich, M. H. Stephen, and S. W. HendersonCoherent Doppler lidar measurements of winds in the weak signal regimeAppl. Opt.19973634913499

P. J. Rodrigo and C. PedersenReduction of phase-induced intensity noise in a fiber-based coherent Doppler lidar using polarization controlOpt. Express20101853205327

S. W. Henderson, P. Gatt, D. Rees, and R. M. HuffakerT. Fujii and T. FukuchiLaser remote sensingCRC Press, Taylor & Francis GroupNew York, USA2005Chapter 7

F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, and C. BarbieriOvercoming the Rayleigh criterion limit with optical vorticesPhys. Rev. Lett.200697163903

R. S. Hansen and C. PedersenAll semiconductor laser Doppler anemometer at 1.55 μmOpt. Express2008161828818295

D. Hosseinzadeh and S. KrishnanOn the use of complementary spectral features for speaker recognitionEURASIP J. Adv. Signal Process.20072008258184

J. S. Seo, M. Jin, S. I. Lee, D. Jang, S. J. Lee, and C. D. YooAudio fingerprinting based on normalized spectral sub-band centroidsProc. IEEE International Conference on Acoustics, Speech, and Signal ProcessingUSA2005Mar.213216

W. Flores-Fuentes, M. Rivas-Lopez, O. Sergiyenko, F. F. Gonzalez-Navarrob, J. Rivera-Castillob, D. Hernandez-Balbuena, and J. C. Rodríguez-QuiñonezaCombined application of power spectrum centroid and support vector machines for measurement improvement in optical scanning systemsSignal Process.2014983751

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.