Abstract

Visibility of road-surface markings is one of the critical issues that should be secured for self-driving cars as well as human drivers. Glass beads are taking on the role of retroreflectors, and therefore are considered a necessity in modern pavements. In this context, retroreflectance is sensitively dependent not only on the refractive index of glass beads but also on that of the surrounding medium. This implies that the optimum refractive index of glass beads immersed in water, i.e. under wet conditions, is different from that of glass beads surrounded by air, i.e. under dry conditions. A refractive index of approximately 1.9, which is known to maximize retroreflectance under dry conditions, actually exhibits much poorer retroreflectance under wet conditions. This suggests that glass beads with optimal refractive index for wet conditions need to be installed together with those for dry conditions. We propose a facile but practical model capable of calculating retroreflectance of glass beads surrounded by an arbitrary medium, here water in particular, and experimentally verify its capability of assessing the refractive index of commercial glass beads. Changes in retroreflectance according to the mixing ratio of glass beads with different refractive indices are also discussed, in an effort to propose the proper use of glass beads produced for dry and wet conditions.

PDF Article

References

  • View by:
  • |

  1. L. A. Ivanov, D. V. Kiesewetter, N. N. Kiselev, V. I. Malyugin, and V. A. SluginMeasurement of retroreflection by glass beads for road markingProc. SPIE2006625162510U
  2. T. GrosgesRetroreflection of glass beads for traffic road stripe paintsOpt. Mater.20083015491554
  3. J. T. Lee, T. L. Maleck, and W. C. TaylorPavement marking material evaluation study in MichiganITE J. Inst. Transp. Eng.1999694451
  4. T. Schnell, F. Aktan, and Y. C. LeeNighttime visibility and retroreflectance of pavement markings in dry, wet, and rainy conditionsTransp. Res. Rec.20031824144155
  5. D. M. Burns, T. P. Hedblom, and T. W. MillerModern pavement marking systems: Relationship between optics and nighttime visibilityTransp. Res. Rec.200820564351
  6. Glass beads for traffic paint, KS L 2521Korean Standard AssociationSeoul2017
  7. H. Fuquan, L. Shangying, and W. ShaominThe refractive index measurement of high refractive index glass beadsActa Photon. Sin.200130753756
  8. F. Sarcinelli, R. Pizzoferrato, and F. ScudieriStudy of the refractive index of microscopic glass beads by light-refraction analysisAppl. Opt.19973689999004
  9. J. L. Hand and S. M. KreidenweisA new method for retrieving particle refractive index and effective density from aerosol size distribution dataAerosol. Sci. Technol.20023610121026
  10. A. Leblance-Hotte, R. St-Gelais, and Y.-A. PeterOptofluidic device for high resolution volume refractive index measurement of single cellProc. 16th International Conference on Miniaturized Systems for Chemistry and Life SciencesJapan2012Oct.13301332
  11. T. YamaguchiRefractive index measurement of high refractive index glass beadsAppl. Opt.19751411111115
  12. R. W. Spinrad and J. F. BrownRelative real refractive index of marine microorganisms: a technique for flow cytometric estimationAppl. Opt.19862519301934
  13. S.-Y. Li, S. Qin, D.-H. Li, and Q.-H. WangUsing a laser source to measure the refractive index of glass beads and Debye theory analysisAppl. Opt.20155496889694
  14. S. Y. Shin, J. I. Lee, W. J. Chung, S.-H. Cho, and Y. G. ChoiAssessing the refractive index of glass beads for use in road-marking applications via retroreflectance measurementCurr. Opt. Photon.20193415422
  15. Standard test method for measurement of retroreflective signs using a portable retroreflectometer at a 0.2 degree observation angle, ASTM E1709-16e1ASTM InternationalPennsylvania2016
  16. Standard test method for measurement of retroreflective signs using a portable retroreflectometer at a 0.5 degree observation angle, ASTM E2540-16ASTM InternationalPennsylvania2016
  17. M. D. Stoudt and K. VedamRetroreflection from spherical glass beads in highway pavement markings. 1: Specular reflectionAppl. Opt.19781718551858
  18. O. Smadi, R. R. Souleyrette, D. J. Ormand, and N. HawkinsPavement marking retroreflectivity analysis of safety effectivenessTransp. Res. Rec.200820561724

Other (18)

L. A. Ivanov, D. V. Kiesewetter, N. N. Kiselev, V. I. Malyugin, and V. A. SluginMeasurement of retroreflection by glass beads for road markingProc. SPIE2006625162510U

T. GrosgesRetroreflection of glass beads for traffic road stripe paintsOpt. Mater.20083015491554

J. T. Lee, T. L. Maleck, and W. C. TaylorPavement marking material evaluation study in MichiganITE J. Inst. Transp. Eng.1999694451

T. Schnell, F. Aktan, and Y. C. LeeNighttime visibility and retroreflectance of pavement markings in dry, wet, and rainy conditionsTransp. Res. Rec.20031824144155

D. M. Burns, T. P. Hedblom, and T. W. MillerModern pavement marking systems: Relationship between optics and nighttime visibilityTransp. Res. Rec.200820564351

Glass beads for traffic paint, KS L 2521Korean Standard AssociationSeoul2017

H. Fuquan, L. Shangying, and W. ShaominThe refractive index measurement of high refractive index glass beadsActa Photon. Sin.200130753756

F. Sarcinelli, R. Pizzoferrato, and F. ScudieriStudy of the refractive index of microscopic glass beads by light-refraction analysisAppl. Opt.19973689999004

J. L. Hand and S. M. KreidenweisA new method for retrieving particle refractive index and effective density from aerosol size distribution dataAerosol. Sci. Technol.20023610121026

A. Leblance-Hotte, R. St-Gelais, and Y.-A. PeterOptofluidic device for high resolution volume refractive index measurement of single cellProc. 16th International Conference on Miniaturized Systems for Chemistry and Life SciencesJapan2012Oct.13301332

T. YamaguchiRefractive index measurement of high refractive index glass beadsAppl. Opt.19751411111115

R. W. Spinrad and J. F. BrownRelative real refractive index of marine microorganisms: a technique for flow cytometric estimationAppl. Opt.19862519301934

S.-Y. Li, S. Qin, D.-H. Li, and Q.-H. WangUsing a laser source to measure the refractive index of glass beads and Debye theory analysisAppl. Opt.20155496889694

S. Y. Shin, J. I. Lee, W. J. Chung, S.-H. Cho, and Y. G. ChoiAssessing the refractive index of glass beads for use in road-marking applications via retroreflectance measurementCurr. Opt. Photon.20193415422

Standard test method for measurement of retroreflective signs using a portable retroreflectometer at a 0.2 degree observation angle, ASTM E1709-16e1ASTM InternationalPennsylvania2016

Standard test method for measurement of retroreflective signs using a portable retroreflectometer at a 0.5 degree observation angle, ASTM E2540-16ASTM InternationalPennsylvania2016

M. D. Stoudt and K. VedamRetroreflection from spherical glass beads in highway pavement markings. 1: Specular reflectionAppl. Opt.19781718551858

O. Smadi, R. R. Souleyrette, D. J. Ormand, and N. HawkinsPavement marking retroreflectivity analysis of safety effectivenessTransp. Res. Rec.200820561724

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.