We propose a novel methodology based on the multiplication function to improve the signal-to-noise ratio (SNR) for vibration detection in a phi optical time-domain reflectometer system (phi-OTDR). The extreme-mean complementary empirical mode decomposition (ECEMD) is designed to break down the original signal into a set of inherent mode functions (IMFs). The multiplication function in terms of selected IMFs is used to determine a vibration’s position. By this method, the SNR of a phi-OTDR system is enhanced by several orders of magnitude. Simulations and experiments applying the method to real data prove the validity of the proposed approach.

© 2018 Optical Society of Korea

PDF Article


  • View by:
  • |
  • |
  • |

  1. [Crossref]

  2. [Crossref]

  3. [Crossref]

  4. [Crossref]

  5. [Crossref]

  6. [Crossref]

  7. [Crossref]

  8. [Crossref]

  9. [Crossref]

  10. [Crossref]

  11. [Crossref]

  12. [Crossref]

  13. [Crossref]

  14. [Crossref]

  15. [Crossref]

  16. [Crossref]

  17. [Crossref]

  18. [Crossref]

  19. [Crossref]

  20. [Crossref]

  21. [Crossref]

  22. [Crossref]

  23. [Crossref]

  24. [Crossref]

  25. [Crossref]

  26. [Crossref]

  27. [Crossref]

  28. [Crossref]

  29. [Crossref]

  30. [Crossref]

  31. [Crossref]

  32. [Crossref]

  33. [Crossref]

2018 (1)

2017 (6)

2016 (6)

2015 (4)

2014 (4)

2013 (1)

2012 (3)

2011 (2)

2010 (5)

2009 (1)

2008 (2)

2005 (1)

1998 (1)

1997 (1)

An, J. C.

Ansari, F.

Atlas, L. E.

Bao, d X.

Bao, X.

Cai, H.

Che, B.

Chen, L.

Chen, Q.

Chen, X.

Chen, Z.

Chizeck, H. J.

Choi, K. N.

Corredera, P.

Dakin, J. P.

Deng, H.

DeSmet, F.

Ding, Z.

Dong, Y.

Duan, N.

Fan, M.

Fan, X.

Fang, Z.

Feng, H.

Filograno, M. L.

Frazão, O.

Fu, C.

Gonzalez-Herráez, M.

González-Herráez, M.

Guillén, P. C.

Guo, H. X.

Han, Y. C.

Hang, N. E.

Hawley, S. D.

He, H.

He, Q.

He, Z.

Hong, X. B.

Hu, Q.

Hu, X. Y.

Jia, X.-H.

Jiang, J.

Jiang, J. F.

Juarez, J. C.

Kopsinis, Y.

Li, A.

Li, H.

Li, J.

Li, L. Z.

Li, P. C.

Li, X.

Li, Y.

Li, Z.

Liang, K.

Liao, A.

Liao, Y.

Liu, D. M.

Liu, E.

Liu, F. S.

Liu, H.

Liu, H. R.

Liu, J.

Liu, J. G.

Liu, K.

Liu, Q.

Liu, T.

Liu, X.

Long, S. R.

Lu, B.

Lu, Y.

Lu, Z.

Luo, B.

Lv, L.

Macias-Guarasa, J.

Maier, E. W.

Martin-Lopez, S.

Martín-López, S.

Martins, H. F.

Matthieu, L.

McLaughlin, S.

Mei, X.

Meng, Z.

Mou, C.

Nakarmi, B.

Pan, C.

Pan, W.

Pan, Z.

Pang, F.

Pastor-Graells, J.

Patrick, E.

Pearce, D. A. J.

Peng, F.

Peng, Z.-P.

Piote, D.

Postvoll, W.

Qian, T.

Qian, X.

Qin, Z.

Qu, R.

Rao, J.

Rao, Y.

Rao, Y.-J.

Shan, X.

Shan, Y.

Shao, L.

Shao, L. Y.

Shao, Y.

Shen, C.

Shen, Z.

Strong, A. P.

Sun, Q.

Sun, Q. Z.

Sun, W.

Sun, X.

Sun, Z.

Taylor, H. F.

Tejedor, J.

Tian, M.

Tu, G.

Wade, C. A.

Wang, F.

Wang, J.

Wang, L.

Wang, S.

Wang, T.

Wang, Y.

Wang, Z.

Wang, Z.-N.

Wu, H.

Wu, J.

Wu, M. C.

Xia, L.

Xiao, S.

Xiao, X.

Xie, S.

Xu, J.

Xu, K.

Xu, T. H.

Xue, N.

Yan, L.

Yan, X.

Yang, G.

Ye, Q.

Yu, G.

Yu, Z. J.

Yuan, L. B.

Zeng, J.

Zeng, Z.

Zhang, H.

Zhang, J.

Zhang, J. H.

Zhang, L.

Zhang, M.

Zhang, X.

Zhang, Y.

Zhang, Z.

Zheng, H.

Zhu, F.

Zhu, H.

Zhu, T.

Zou, Q.

Zou, X.

Zuo, C.

Appl. Opt (1)

Appl. Opt. (1)

Chi. Opt. Lett. (1)

IEEE Photon. J. (2)

IEEE Photon. Technol. Lett. (2)

IEEE Signal Process. Lett. (1)

IEEE Trans. Signal Process. (1)

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

J. Lightw. Technol. (9)

J. Opt. (1)

Lightw. Technol. (1)

Opt. Commun. (1)

Opt. Express (8)

Opt. Lett. (2)

Proc. R. Soc. London, Ser. A (1)

Proc. SPIE (2)

Sens. Actuators A (1)

Sensors (Basel) (3)

Other (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.