Abstract

We are currently investigating the feasibility of a 1.6 m telescope with a laser-guide star adaptive optics (AO) system. The telescope, if successfully commissioned, would be the first dedicated adaptive optics observatory in South Korea. The 1.6 m telescope is an f/13.6 Cassegrain telescope with a focal length of 21.7 m. This paper first reviews atmospheric seeing conditions measured over a year in 2014~2015 at the Bohyun Observatory, South Korea, which corresponds to an area from 11.6 to 21.6 cm within 95% probability with regard to the Fried parameter of 880 nm at a telescope pupil plane. We then derive principal seeing conditions such as the Fried parameter and Greenwood frequency for eight astronomical spectral bands (V/R/I/J/H/K/L/M centered at 0.55, 0.64, 0.79, 1.22, 1.65, 2.20, 3.55, and 4.77 μm). Then we propose an AO system with a laser guide star for the 1.6 m telescope based on the seeing conditions. The proposed AO system consists of a fast tip/tilt secondary mirror, a 17 × 17 deformable mirror, a 16 × 16 Shack-Hartmann sensor, and a sodium laser guide star (589.2 nm). The high order AO system is close-looped with 2 KHz sampling frequency while the tip/tilt mirror is independently close-looped with 63 Hz sampling frequency. The AO system has three operational concepts: 1) bright target observation with its own wavefront sensing, 2) less bright star observation with wavefront sensing from another bright natural guide star (NGS), and 3) faint target observation with tip/tilt sensing from a bright natural guide star and wavefront sensing from a laser guide star. We name these three concepts ‘None’, ‘NGS only’, and ‘LGS + NGS’, respectively. Following a thorough investigation into the error sources of the AO system, we predict the root mean square (RMS) wavefront error of the system and its corresponding Strehl ratio over nine analysis cases over the worst (2σ) seeing conditions. From the analysis, we expect Strehl ratio >0.3 in most seeing conditions with guide stars.

PDF Article

References

  • View by:
  • |

  1. J. M. BeckersAdaptive optics for astronomy: principles, performance, and applicationsAnnu. Rev. Astron. Astrophys.1993311362
  2. R. K. TysonPrinciples of Adaptive OpticsCRC PressBoca Raton, FL, USA2015
  3. S. S. Olivier, D. T. Gavel, H. W. Friedman, C. E. Max, J. R. An, K. Avicola, B. J. Bauman, J. M. Brase, E. W. Campbell, C. J. Carrano, J. B. Cooke, G. J. Freeze, E. L. Gates, V. K. Kanz, T. C. Kuklo, B. A. Macintosh, M. J. Newman, E. L. Pierce, K. E. Waltjen, and J. A. WatsonImproved performance of the laser guide star adaptive optics system at Lick ObservatoryProc. SPIE1999376227
  4. W. C. Rao, Y. Bo, C. Li, M. Li, X Zhang, A. Zhang, C. Guan, L. Zhou, S. Chen, X. Hao, W. Ma, and Y. ZhangA sodium guide star adaptive optics system for the 1.8 meter telescopeProc. SPIE2012844784474K
  5. C. d’Orgeville and G. J. FetzerFour generations of sodium guide star lasers for adaptive optics in astronomy and space situational awarenessProc. SPIE2016990999090R
  6. R. K. TysonAdaptive optics system performance approximations for atmospheric turbulence correctionOpt. Eng.19902911651173
  7. D. T. Gavel, J. R. Morris, and R. G. VernonSystematic design and analysis of laser-guide-star adaptive-optics systems for large telescopesJ. Opt. Soc. Am. A199411914924
  8. B. W. Frazier, M. Smith, and R. K. TysonPerformance of a compact adaptive-optics systemAppl. Opt.20044342814287
  9. M. A. van Dam, D. Le Mignant, and B. A. MacintoshPerformance of the Keck Observatory adaptive-optics systemAppl. Opt.20044354585467
  10. J. H. Lee, S. Shin, G. N. Park, H. Rhee, and H. YangAtmospheric turbulence simulator for adaptive optics evaluation on an optical test benchCurr. Opt. Photon.20171107112
  11. J. H. Lee, B. C. Bigelow, D. D. Walker, A. P. Doel, and R. G. BinghamWhy adaptive secondaries?Publ. Astron. Soc. Pacific200011297107
  12. E. HechtOpticsAddison WesleySan Francisco, CA, USA2002
  13. D. L. FriedOptical resolution through a randomly inhomogeneous medium for very long and very short exposuresJ. Opt. Soc. Am.19665613721379
  14. F. RoddierThe effects of atmospheric turbulence in optical astronomyProg. Opt.198119281376
  15. F. Roddier, J. M. Gilli, and G. LundOn the origin of speckle boiling and its effects in stellar speckle interferometryJ. Opt.198213263271
  16. D. P. GreenwoodBandwidth specification for adaptive optics systemJ. Opt. Soc. Am.197767390393
  17. G. TylerBandwidth considerations for tracking through turbulenceJ. Opt. Soc. Am.199411358367
  18. R. R. ParentiAdaptive optics for astronomyLincoln Lab. J.1992593114
  19. J. H. Lee, S. J. Ro, K. Kim, T. Butterley, R. Wilson, Y. Choi, and S. LeeRobotic SLODAR development for seeing evaluations at the Bohyunsan ObservatoryAdvanced Maui Optical and Space Surveillance Technologies Conference2015
  20. R. W. WilsonSLODAR: measuring optical turbulence altitude with a Shack-Hartmann wavefront sensorMon. Not. R. Astron. Soc.2002337103108
  21. T. Butterley, R. W. Wilson, and M. SarazinDetermination of the profile of atmospheric optical turbulence strength from SLODAR dataMon. Not. R. Astron. Soc.2006369835845
  22. J. Vernin and F. RoddierExperimental determination of two-dimensional spatiotemporal power spectra of stellar light scintillation Evidence for a multilayer structure of the air turbulence in the upper troposphereJ. Opt. Soc. Am.197363270273
  23. B. García-Lorenzo, A. Eff-Darwich, J. J. Fuensalida, and J. A. Castro-AlmazánEstimation of adaptive optics parameters from wind speed: results for the Teide ObservatoryProc. SPIE2009747674760F
  24. B. García-Lorenzo, A. Eff-Darwich, J. J. Fuensalida, and J. A. Castro-AlmazánAdaptive optics parameters connection to wind speed at the Teide Observatory: corrigendumMon. Notices Royal Astron.2011414801809
  25. C. S. Gardner, B. M. Welsh, and L. A. ThopsonDesign and performance analysis of adaptive optical telescopes using laser guide starsProc. IEEE19907817211743
  26. R. FlickerEfficient first-order performance estimation for high-order adaptive optics systemsAstron. Astrophys.200340511771189
  27. J. W. HardyAdaptive optics for astronomical telescopesOxford University PressNew York, USA1998
  28. https://www.alpao.com/adaptive-optics/deformable-mirrors.html1 May. 2018
  29. https://www.physikinstrumente.com/en/products/parallel-kinematic-hexapods/hexapods-with-motor-screw-drives/h-824-6-axis-hexapod-700815/1 May. 2018
  30. http://www.axiomoptics.com/llc/ocam%C2%B2k/1 May. 2018
  31. http://www.nuvucameras.com/products/1 May. 2018
  32. M. S. Belen’kiiTilt angular correlation and tilt sensing techniques with a laser guide starProc. SPIE19972956206217
  33. C. M. Correia and J. TeixeiraAnti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systemsJ. Opt. Soc. Am. A20143127632774

Other (33)

J. M. BeckersAdaptive optics for astronomy: principles, performance, and applicationsAnnu. Rev. Astron. Astrophys.1993311362

R. K. TysonPrinciples of Adaptive OpticsCRC PressBoca Raton, FL, USA2015

S. S. Olivier, D. T. Gavel, H. W. Friedman, C. E. Max, J. R. An, K. Avicola, B. J. Bauman, J. M. Brase, E. W. Campbell, C. J. Carrano, J. B. Cooke, G. J. Freeze, E. L. Gates, V. K. Kanz, T. C. Kuklo, B. A. Macintosh, M. J. Newman, E. L. Pierce, K. E. Waltjen, and J. A. WatsonImproved performance of the laser guide star adaptive optics system at Lick ObservatoryProc. SPIE1999376227

W. C. Rao, Y. Bo, C. Li, M. Li, X Zhang, A. Zhang, C. Guan, L. Zhou, S. Chen, X. Hao, W. Ma, and Y. ZhangA sodium guide star adaptive optics system for the 1.8 meter telescopeProc. SPIE2012844784474K

C. d’Orgeville and G. J. FetzerFour generations of sodium guide star lasers for adaptive optics in astronomy and space situational awarenessProc. SPIE2016990999090R

R. K. TysonAdaptive optics system performance approximations for atmospheric turbulence correctionOpt. Eng.19902911651173

D. T. Gavel, J. R. Morris, and R. G. VernonSystematic design and analysis of laser-guide-star adaptive-optics systems for large telescopesJ. Opt. Soc. Am. A199411914924

B. W. Frazier, M. Smith, and R. K. TysonPerformance of a compact adaptive-optics systemAppl. Opt.20044342814287

M. A. van Dam, D. Le Mignant, and B. A. MacintoshPerformance of the Keck Observatory adaptive-optics systemAppl. Opt.20044354585467

J. H. Lee, S. Shin, G. N. Park, H. Rhee, and H. YangAtmospheric turbulence simulator for adaptive optics evaluation on an optical test benchCurr. Opt. Photon.20171107112

J. H. Lee, B. C. Bigelow, D. D. Walker, A. P. Doel, and R. G. BinghamWhy adaptive secondaries?Publ. Astron. Soc. Pacific200011297107

E. HechtOpticsAddison WesleySan Francisco, CA, USA2002

D. L. FriedOptical resolution through a randomly inhomogeneous medium for very long and very short exposuresJ. Opt. Soc. Am.19665613721379

F. RoddierThe effects of atmospheric turbulence in optical astronomyProg. Opt.198119281376

F. Roddier, J. M. Gilli, and G. LundOn the origin of speckle boiling and its effects in stellar speckle interferometryJ. Opt.198213263271

D. P. GreenwoodBandwidth specification for adaptive optics systemJ. Opt. Soc. Am.197767390393

G. TylerBandwidth considerations for tracking through turbulenceJ. Opt. Soc. Am.199411358367

R. R. ParentiAdaptive optics for astronomyLincoln Lab. J.1992593114

J. H. Lee, S. J. Ro, K. Kim, T. Butterley, R. Wilson, Y. Choi, and S. LeeRobotic SLODAR development for seeing evaluations at the Bohyunsan ObservatoryAdvanced Maui Optical and Space Surveillance Technologies Conference2015

R. W. WilsonSLODAR: measuring optical turbulence altitude with a Shack-Hartmann wavefront sensorMon. Not. R. Astron. Soc.2002337103108

T. Butterley, R. W. Wilson, and M. SarazinDetermination of the profile of atmospheric optical turbulence strength from SLODAR dataMon. Not. R. Astron. Soc.2006369835845

J. Vernin and F. RoddierExperimental determination of two-dimensional spatiotemporal power spectra of stellar light scintillation Evidence for a multilayer structure of the air turbulence in the upper troposphereJ. Opt. Soc. Am.197363270273

B. García-Lorenzo, A. Eff-Darwich, J. J. Fuensalida, and J. A. Castro-AlmazánEstimation of adaptive optics parameters from wind speed: results for the Teide ObservatoryProc. SPIE2009747674760F

B. García-Lorenzo, A. Eff-Darwich, J. J. Fuensalida, and J. A. Castro-AlmazánAdaptive optics parameters connection to wind speed at the Teide Observatory: corrigendumMon. Notices Royal Astron.2011414801809

C. S. Gardner, B. M. Welsh, and L. A. ThopsonDesign and performance analysis of adaptive optical telescopes using laser guide starsProc. IEEE19907817211743

R. FlickerEfficient first-order performance estimation for high-order adaptive optics systemsAstron. Astrophys.200340511771189

J. W. HardyAdaptive optics for astronomical telescopesOxford University PressNew York, USA1998

https://www.alpao.com/adaptive-optics/deformable-mirrors.html1 May. 2018

https://www.physikinstrumente.com/en/products/parallel-kinematic-hexapods/hexapods-with-motor-screw-drives/h-824-6-axis-hexapod-700815/1 May. 2018

http://www.axiomoptics.com/llc/ocam%C2%B2k/1 May. 2018

http://www.nuvucameras.com/products/1 May. 2018

M. S. Belen’kiiTilt angular correlation and tilt sensing techniques with a laser guide starProc. SPIE19972956206217

C. M. Correia and J. TeixeiraAnti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systemsJ. Opt. Soc. Am. A20143127632774

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.