Abstract

We proposed a two-mode fiber (TMF) design that can effectively reduce the mode overlap between LP01 and LP11 modes by using a W-shaped index profile core structure, which is a primary concern in uncoupled mode division multiplexing (MDM). TMF has a three-layered core structure; central circular core, inner cladding, and outer ring core. We confirmed that in an optimal structure the LP01 mode was highly confined to the central core while the LP11 mode was guided along the outer ring core to result in a minimum overlap integral. We used a full-vectorial finite element method to estimate effective index, differential group delay (DGD), confinement loss, chromatic dispersion, and mode overlap controlling the parameters of the W-shaped structure. The optimized W-profile fiber provided optical characteristics within the ITU-T recommended standards over the entire C+L band.

PDF Article

References

  • View by:
  • |

  1. L. Schares, B. G. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. L. Schow, P. Fuentes, and O. MattesA throughput-optimized optical network for data-intensive computingIEEE Micro2014345263
  2. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. GoebelCapacity limits of optical fiber networksJ. Lightw. Technol.201028662701
  3. L. Ma, K. Tsujikawa, N. Hanzawa, S. Aozasa, S. Nozoe, and F. YamamotoDesign and fabrication of low loss hole-assisted few-mode fibers with consideration of surface imperfection of air holesJ. Lightw. Technol.20163451645169
  4. L. Grüner-Nielsen, Y. Sun, J. W. Nicholson, D. Jakobsen, K. G. Jespersen, R. Lingle, and B. PálsdóttirFew mode transmission fiber with low DGD, low mode coupling, and low lossJ. Lightw. Technol.20123036933698
  5. P. Sillard, M. Bigot-Astruc, and D. MolinFew-mode fibers for mode-division-multiplexed systemsJ. Lightw. Technol.20143228242829
  6. K.-P. Ho and J. M. KahnMode coupling and its impact on spatially multiplexed systemsOpt. Fiber Telecommun. VI20131713861392
  7. D. M. Marom and M. BlauSwitching solutions for WDM-SDM optical networksIEEE Commun. Mag.2015536068
  8. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-J. Essiambre, and P. J. WinzerMode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processingJ. Lightw. Technol.201230521531
  9. C. Koebele, M. Salsi, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, and P. SillardTwo mode transmission at 2 × 100 Gb/s, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexerOpt. Express2011191659316600
  10. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. KoshibaDemonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode couplerProc. Optical Fiber Communication ConferenceOptical Society of America2011OWA4
  11. P. Sillard, M. Astruc, D. Boivin, H. Maerten, and L. ProvostFew-mode fiber for uncoupled mode-division multiplexing transmissionsProc. European Conference and Exposition on Optical CommunicationsOptical Society of America2011Tu. 5LeCervin. 7
  12. N. Kumano, K. Mukasa, M. Sakano, and H. MoridairDevelopment of a non-zero dispersion-shifted fiber with ultra-low dispersion slopeFurukawa Rev.20022216
  13. N. Riesen, J. D. Love, and J. W. ArkwrightFew-mode elliptical-core fiber data transmissionIEEE Photon. Technol. Lett.201224344
  14. A. W. SnyderCoupled-mode theory for optical fibersJ. Opt. Soc. Am.19726212671277
  15. K. Nakajima, P. Sillard, D. Richardson, M.-J. Li, R.-J. Essiambre, and S. MatsuoTransmission media for an SDM-based optical communication systemIEEE Commun. Mag.2015534451
  16. Y.-M. Jung, S.-U. Alam, and D. J. RichardsonAll-fiber spatial mode selective filter for compensating mode dependent loss in MDM transmission systemsProc. Optical Fiber Communication ConferenceOptical Society of Americ2015W2A. 13
  17. Y. S. Lee, C. G. Lee, Y. Jung, M.-K. Oh, and S. KimHighly birefringent and dispersion compensating photonic crystal fiber based on double line defect coreJ. Opt. Soc. Korea201620567574
  18. Characteristics of a Cut-Off Shifted, Single-Mode Fibre and Cable, ITU-T Std. G.6542012Oct.
  19. B. BrixnerRefractive-index interpolation for fused silicaJ. Opt. Soc. Am.196757674676
  20. K. Oh and U.-C. PaekSilica optical fiber technology for devices and components: design, fabrication, and international standardsJohn Wiley & Sons2012
  21. M. Park, H. E. Arabi, S. Lee, and K. OhIndependent control of birefringence and chromatic dispersion in a photonic crystal fiber using two hollow ring defectsOpt. Commun.201128449144919
  22. CorningCorning SMF-28 optical fiber product informationhttp://ece466.groups.et.byu.net/notes/smf28.pdf
  23. O. Bands, B. Laurent, and G. DrakFrom O to L: The future of optical-wavelength bandsBroadband Properties20088385
  24. F. Ferreira, D. Fonseca, and H. SilvaDesign of few-mode fibers with arbitrary and flattened differential mode delayIEEE Photon. Technol. Lett.201325438441
  25. M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, and F. YamamotoDesign of three-spatial-mode ring-core fiberJ. Lightw. Technol.20143213371343
  26. J. Zhao, M. Tang, K. Oh, Z. Feng, C. Zhao, R. Liao, S. Fu, P. P. Shum, and D. LiuPolarization-maintaining few mode fiber composed of a central circular-hole and an elliptical-ring corePhoton. Res.20175261266
  27. M. Bigot-Astruc, L. Provost, G. Krabshuis, P. Dhenry, and P. Sillard125 μm glass diameter single-mode fiber with Aeff of 155 μm 2Proc. Optical Fiber Communication ConferenceOptical Society of America2011OTuJ2
  28. K. Takenaga, Y. Sasaki, N. Guan, S. Matsuo, M. Kasahara, K. Saitoh, and M. KoshibaLarge effective-area few-mode multicore fiberIEEE Photon. Technol. Lett.20122419411944
  29. Characteristics of a non-zero dispersion-shifted single-mode optical fibre and cable, ITU-T G.6552009Nov.

Other (29)

L. Schares, B. G. Lee, F. Checconi, R. Budd, A. Rylyakov, N. Dupuis, F. Petrini, C. L. Schow, P. Fuentes, and O. MattesA throughput-optimized optical network for data-intensive computingIEEE Micro2014345263

R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. GoebelCapacity limits of optical fiber networksJ. Lightw. Technol.201028662701

L. Ma, K. Tsujikawa, N. Hanzawa, S. Aozasa, S. Nozoe, and F. YamamotoDesign and fabrication of low loss hole-assisted few-mode fibers with consideration of surface imperfection of air holesJ. Lightw. Technol.20163451645169

L. Grüner-Nielsen, Y. Sun, J. W. Nicholson, D. Jakobsen, K. G. Jespersen, R. Lingle, and B. PálsdóttirFew mode transmission fiber with low DGD, low mode coupling, and low lossJ. Lightw. Technol.20123036933698

P. Sillard, M. Bigot-Astruc, and D. MolinFew-mode fibers for mode-division-multiplexed systemsJ. Lightw. Technol.20143228242829

K.-P. Ho and J. M. KahnMode coupling and its impact on spatially multiplexed systemsOpt. Fiber Telecommun. VI20131713861392

D. M. Marom and M. BlauSwitching solutions for WDM-SDM optical networksIEEE Commun. Mag.2015536068

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-J. Essiambre, and P. J. WinzerMode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processingJ. Lightw. Technol.201230521531

C. Koebele, M. Salsi, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, and P. SillardTwo mode transmission at 2 × 100 Gb/s, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexerOpt. Express2011191659316600

N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. KoshibaDemonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode couplerProc. Optical Fiber Communication ConferenceOptical Society of America2011OWA4

P. Sillard, M. Astruc, D. Boivin, H. Maerten, and L. ProvostFew-mode fiber for uncoupled mode-division multiplexing transmissionsProc. European Conference and Exposition on Optical CommunicationsOptical Society of America2011Tu. 5LeCervin. 7

N. Kumano, K. Mukasa, M. Sakano, and H. MoridairDevelopment of a non-zero dispersion-shifted fiber with ultra-low dispersion slopeFurukawa Rev.20022216

N. Riesen, J. D. Love, and J. W. ArkwrightFew-mode elliptical-core fiber data transmissionIEEE Photon. Technol. Lett.201224344

A. W. SnyderCoupled-mode theory for optical fibersJ. Opt. Soc. Am.19726212671277

K. Nakajima, P. Sillard, D. Richardson, M.-J. Li, R.-J. Essiambre, and S. MatsuoTransmission media for an SDM-based optical communication systemIEEE Commun. Mag.2015534451

Y.-M. Jung, S.-U. Alam, and D. J. RichardsonAll-fiber spatial mode selective filter for compensating mode dependent loss in MDM transmission systemsProc. Optical Fiber Communication ConferenceOptical Society of Americ2015W2A. 13

Y. S. Lee, C. G. Lee, Y. Jung, M.-K. Oh, and S. KimHighly birefringent and dispersion compensating photonic crystal fiber based on double line defect coreJ. Opt. Soc. Korea201620567574

Characteristics of a Cut-Off Shifted, Single-Mode Fibre and Cable, ITU-T Std. G.6542012Oct.

B. BrixnerRefractive-index interpolation for fused silicaJ. Opt. Soc. Am.196757674676

K. Oh and U.-C. PaekSilica optical fiber technology for devices and components: design, fabrication, and international standardsJohn Wiley & Sons2012

M. Park, H. E. Arabi, S. Lee, and K. OhIndependent control of birefringence and chromatic dispersion in a photonic crystal fiber using two hollow ring defectsOpt. Commun.201128449144919

CorningCorning SMF-28 optical fiber product informationhttp://ece466.groups.et.byu.net/notes/smf28.pdf

O. Bands, B. Laurent, and G. DrakFrom O to L: The future of optical-wavelength bandsBroadband Properties20088385

F. Ferreira, D. Fonseca, and H. SilvaDesign of few-mode fibers with arbitrary and flattened differential mode delayIEEE Photon. Technol. Lett.201325438441

M. Kasahara, K. Saitoh, T. Sakamoto, N. Hanzawa, T. Matsui, K. Tsujikawa, and F. YamamotoDesign of three-spatial-mode ring-core fiberJ. Lightw. Technol.20143213371343

J. Zhao, M. Tang, K. Oh, Z. Feng, C. Zhao, R. Liao, S. Fu, P. P. Shum, and D. LiuPolarization-maintaining few mode fiber composed of a central circular-hole and an elliptical-ring corePhoton. Res.20175261266

M. Bigot-Astruc, L. Provost, G. Krabshuis, P. Dhenry, and P. Sillard125 μm glass diameter single-mode fiber with Aeff of 155 μm 2Proc. Optical Fiber Communication ConferenceOptical Society of America2011OTuJ2

K. Takenaga, Y. Sasaki, N. Guan, S. Matsuo, M. Kasahara, K. Saitoh, and M. KoshibaLarge effective-area few-mode multicore fiberIEEE Photon. Technol. Lett.20122419411944

Characteristics of a non-zero dispersion-shifted single-mode optical fibre and cable, ITU-T G.6552009Nov.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.