Abstract

The errors in retrieved aerosol backscattering coefficients due to different lidar ratios are analyzed quantitatively in this paper. The actual calculation shows that the inversion error of the aerosol backscattering coefficients using the Fernald backward-integration method increases with increasing inversion distance. The greater the error in the lidar ratio, the faster the error in the aerosol backscattering coefficient increases. For the same error in lidar ratio, the smaller actual aerosol backscattering coefficient will get the larger relative error of the retrieved aerosol backscattering coefficient. The errors in the lidar ratios for dust or the cirrus layer have great impact on the retrievals of backscattering coefficients. The interval between the retrieved height and the reference range is one of the important factors for the derived error in the aerosol backscattering coefficient, which is revealed quantitatively for the first time in this paper. The conclusions of this article can provide a basis for error estimation in retrieved backscattering coefficients of background aerosols, dust and cirrus layer. The errors in the lidar ratio of an aerosol layer influence the retrievals of backscattering coefficients for the aerosol layer below it.

PDF Article

References

  • View by:
  • |

  1. Q. He, C. Li, J. Mao, and A. K. LauA study on the aerosol extinction-to-backscatter ratio with combination of micro-pulse LIDAR and MODIS over Hong KongAtmos. Chem. Phys.2003630993133
  2. B. Veera, R. Anil, J. Mukesh, and R. C. SharmaMie lidar observations of lower tropospheric aerosols and cloudsSpectrochim. Acta. A.2011843236
  3. Z. Tao, Q. Zhang, K. Yuan, D. Wu, K. Cao, S. Hu, and H. HuRetrieving aerosol backscattering coefficient for short range lidar using parameter selection at reference pointChin. Opt. Lett.20108732734
  4. G. Harish and A. JayaramanAirborne lidar study of the vertical distribution of aerosols over Hyderabad, an urban site in central India, and its implication for radiative forcing calculationsAnn. Geophys.20062424612470
  5. T. Bangia, A. Kumar, R. Sagar, and S. K. SinghDevelopment of Mie LIDAR system and initial cloud observations over Central Himalayan regionSci. Res. Essays20116896907
  6. X. Wang, M. G. Frontoso, G. Pisani, and N. SpinelliRetrieval of atmospheric particles optical properties by combining ground-based and spaceborne lidar elastic scattering profilesOpt. Express20071567346743
  7. D. Wu, J. Zhou, D. Liu, Z. Wang, Z. Zhong, C. Xie, F. Qi, A. Fan, and Y. Wang12-year LIDAR Observations of Tropospheric Aerosol over Hefei (31.9°N, 117.2°E), China,J. Opt. Soc. Korea2011159095
  8. X. Huang, X. Yang, F. Geng, H. Zhang, Q. He, and L. BuAerosol measurement and property analysis based on data collected by a micro-pulse LIDAR over Shanghai, ChinaJ. Opt. Soc. Korea201014185189
  9. F. G. FernaldAnalysis of atmospheric lidar observations: some commentsAppl. Opt.198423652
  10. F. Rocadenbosch, M. N. Reba, M. Sicard, and A. ComerónPractical analytical backscatter error bars for elastic one-component lidar inversion algorithmAppl. Opt.2010493380
  11. M. Sicard, A. Comerón, F. Rocadenbosch, A. Rodríguez, and C. MuñozQuasi-analytical determination of noise-induced error limits in lidar retrieval of aerosol backscatter coefficient by the elastic, two-component algorithmAppl. Opt.200948176182
  12. A. H. Omar, D. M. Winker, C. Kittaka, M. A. Vaughan, Z. Liu, Y. Hu, C. R. Trepte, R. R. Rogers, R. A. Ferrare, K. P. Lee, R. E. Kuehn, and C. A. HostetlerThe CALIPSO automated aerosol classification and lidar ratio selection algorithmJ. Atmos. Ocean. Tech.20092619942014
  13. Z. Liu, N. Sugimoto, and T. MurayamaExtinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidarAppl. Opt.2002412760
  14. C. Córdoba-Jabonero, I. Sabbah, M. Sorribas, J. A. Adame, E. Cuevas, F. A. Sharifi, and M. Gil-OjedaSaharan and arabian dust aerosols: a comparative case study of lidar ratioProc. European Physical Journal Web of ConferencesUSA2016Jun.paper 08002
  15. W. N. Chen, C. W. Chiang, and J. B. NeeLidar ratio and depolarization ratio for cirrus cloudsAppl. Opt.20024164706476

Other (15)

Q. He, C. Li, J. Mao, and A. K. LauA study on the aerosol extinction-to-backscatter ratio with combination of micro-pulse LIDAR and MODIS over Hong KongAtmos. Chem. Phys.2003630993133

B. Veera, R. Anil, J. Mukesh, and R. C. SharmaMie lidar observations of lower tropospheric aerosols and cloudsSpectrochim. Acta. A.2011843236

Z. Tao, Q. Zhang, K. Yuan, D. Wu, K. Cao, S. Hu, and H. HuRetrieving aerosol backscattering coefficient for short range lidar using parameter selection at reference pointChin. Opt. Lett.20108732734

G. Harish and A. JayaramanAirborne lidar study of the vertical distribution of aerosols over Hyderabad, an urban site in central India, and its implication for radiative forcing calculationsAnn. Geophys.20062424612470

T. Bangia, A. Kumar, R. Sagar, and S. K. SinghDevelopment of Mie LIDAR system and initial cloud observations over Central Himalayan regionSci. Res. Essays20116896907

X. Wang, M. G. Frontoso, G. Pisani, and N. SpinelliRetrieval of atmospheric particles optical properties by combining ground-based and spaceborne lidar elastic scattering profilesOpt. Express20071567346743

D. Wu, J. Zhou, D. Liu, Z. Wang, Z. Zhong, C. Xie, F. Qi, A. Fan, and Y. Wang12-year LIDAR Observations of Tropospheric Aerosol over Hefei (31.9°N, 117.2°E), China,J. Opt. Soc. Korea2011159095

X. Huang, X. Yang, F. Geng, H. Zhang, Q. He, and L. BuAerosol measurement and property analysis based on data collected by a micro-pulse LIDAR over Shanghai, ChinaJ. Opt. Soc. Korea201014185189

F. G. FernaldAnalysis of atmospheric lidar observations: some commentsAppl. Opt.198423652

F. Rocadenbosch, M. N. Reba, M. Sicard, and A. ComerónPractical analytical backscatter error bars for elastic one-component lidar inversion algorithmAppl. Opt.2010493380

M. Sicard, A. Comerón, F. Rocadenbosch, A. Rodríguez, and C. MuñozQuasi-analytical determination of noise-induced error limits in lidar retrieval of aerosol backscatter coefficient by the elastic, two-component algorithmAppl. Opt.200948176182

A. H. Omar, D. M. Winker, C. Kittaka, M. A. Vaughan, Z. Liu, Y. Hu, C. R. Trepte, R. R. Rogers, R. A. Ferrare, K. P. Lee, R. E. Kuehn, and C. A. HostetlerThe CALIPSO automated aerosol classification and lidar ratio selection algorithmJ. Atmos. Ocean. Tech.20092619942014

Z. Liu, N. Sugimoto, and T. MurayamaExtinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidarAppl. Opt.2002412760

C. Córdoba-Jabonero, I. Sabbah, M. Sorribas, J. A. Adame, E. Cuevas, F. A. Sharifi, and M. Gil-OjedaSaharan and arabian dust aerosols: a comparative case study of lidar ratioProc. European Physical Journal Web of ConferencesUSA2016Jun.paper 08002

W. N. Chen, C. W. Chiang, and J. B. NeeLidar ratio and depolarization ratio for cirrus cloudsAppl. Opt.20024164706476

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.