Abstract

We report the physical implementation of a tunable photonic microwave delay line filter based on injection locking of a single Fabry-Perot laser diode (FP-LD) to a reflective semiconductor optical amplifier (RSOA). The laser generates equally spaced multiple wavelengths and a single tapped-delay line can be obtained with a dispersive single mode fiber. The filter frequency response depends on the wavelength spacing and can be tuned by the temperature of the FP-LD varying lasing wavelength. For amplitude control of the wavelengths, we use gain saturation of the RSOA and the offset between the peak wavelengths of the FP-LD and the RSOA to decrease the amplitude difference in the wavelengths. From the temperature change of total 15°C, the filter, consisting of four flat wavelengths and two wavelengths with slightly lower amplitudes on both sides, has shown tunability of about 390 MHz.

© 2018 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Vilcot, B. Cabon, and J. Chazelas, (Eds.) Microwave Photonics (Kluwer Academic Publishers, 2003).
  2. X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Techn. 54, 804-809 (2006).
    [Crossref]
  3. M. Chen, J. Yang, P. Sheng, X. Tong, and H. Chen, “Tunable microwave generation method based on birefringence photonic crystal fiber,” Optik 127, 5990-5999 (2016).
    [Crossref]
  4. Y. Teng, Y. Chen, B. Zhang, P. Zhang, and Y. Li, “Photonic generation of frequency-decupled microwave signal based on cascaded Mach-Zehnder modulators,” Optik 127, 9275-9279 (2016).
    [Crossref]
  5. J. Sun, Y. Huang, H. Li, and C. Jiang, “Photonic generation of microwave signals using dual-wavelength single-longitudinal-mode fiber lasers,” Optik 122, 764-768 (2011).
    [Crossref]
  6. W. Li, F. Kong, and J. Yao, “Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator,” J. Lightw. Technol. 31, 3780-3786 (2013).
    [Crossref]
  7. X. S. Yao, “Polarization insensitive antenna remoting link with frequency conversion gain,” IEEE Photon. Technol. Lett. 12, 1382-1384 (2000).
    [Crossref]
  8. V. C. Duarte, M. V. Drummond, and R. N. Nogueira, “Photonic true-time-delay beamformer for a phased array antenna receiver based on self-heterodyne detection,” J. Lightw. Technol. 34, 5566-5575 (2016).
    [Crossref]
  9. Y. Wei, S. Huang, K. Sun, Q. Wang, and W. Gu, “Broadband and tunable RF photonic phase shifter based on optical SSB modulation and FBG filtering,” Optik 127, 700-702 (2016).
    [Crossref]
  10. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol. 24, 201-229 (2006).
    [Crossref]
  11. J. Capmany, J. Cascon, J. L. Martin, S. Sales, D. Pastor, and J. Marti, “Synthesis of fiber-optic delay line filters,” IEEE Trans. Microw. Theory Techn. 13, 2003-2012 (1995).
  12. F. Zeng and J. Yao, “All-optical bandpass microwave filter based on an electro-optic phase modulator,” Opt. Express 12, 3814-3819 (2004).
    [Crossref]
  13. J. Guo, J. Li, Y. Zhang, Y. C. Xiao, and W. Y. Chen, “The study of an ultrawide tunable range single passband microwave photonic notch filter,” Optik 126, 2512-2517 (2015).
    [Crossref]
  14. F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, “All-optical RF filter using amplitude inversion in a semiconductor optical amplifier,” IEEE Trans. Microw. Theory Techn. 45, 1473-1477 (1997).
    [Crossref]
  15. J. Capmany, D. Pastor, A. Martinez, B. Ortega, and S. Sales, “Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator,” Opt. Lett. 28, 1415-1417 (2003).
    [Crossref]
  16. Q. Wang, J. P. Yao, and J. D. Bull, “Negative tap photonic microwave filter based on a Mach-Zehnder modulator and a tunable optical polarizer,” IEEE Photon. Technol. Lett. 19, 1750-1752 (2007).
    [Crossref]
  17. J. Mora, A. Martinez, M. D. Manzanedo, J. Capmany, B. Ortega, and D. Pastor, “Microwave photonic filters with arbitrary positive and negative coefficients using multiple phase inversion in SOA based XGM wavelength converter,” Electron. Lett. 41, 921-922 (2005).
    [Crossref]
  18. A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with alloptical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744-1746 (2006).
    [Crossref]
  19. Y. Yan and J. P. Yao, “A tunable photonic microwave filter with complex coefficient using an optical RF phase shifter,” IEEE Photon. Technol. Lett. 19, 1472-1474 (2007).
    [Crossref]
  20. Y. Dai and J. Yao, “Nonuniformly-spaced photonic microwave delay line filter,” Opt. Express 16, 4713-4718 (2008).
    [Crossref]

2016 (4)

M. Chen, J. Yang, P. Sheng, X. Tong, and H. Chen, “Tunable microwave generation method based on birefringence photonic crystal fiber,” Optik 127, 5990-5999 (2016).
[Crossref]

Y. Teng, Y. Chen, B. Zhang, P. Zhang, and Y. Li, “Photonic generation of frequency-decupled microwave signal based on cascaded Mach-Zehnder modulators,” Optik 127, 9275-9279 (2016).
[Crossref]

V. C. Duarte, M. V. Drummond, and R. N. Nogueira, “Photonic true-time-delay beamformer for a phased array antenna receiver based on self-heterodyne detection,” J. Lightw. Technol. 34, 5566-5575 (2016).
[Crossref]

Y. Wei, S. Huang, K. Sun, Q. Wang, and W. Gu, “Broadband and tunable RF photonic phase shifter based on optical SSB modulation and FBG filtering,” Optik 127, 700-702 (2016).
[Crossref]

2015 (1)

J. Guo, J. Li, Y. Zhang, Y. C. Xiao, and W. Y. Chen, “The study of an ultrawide tunable range single passband microwave photonic notch filter,” Optik 126, 2512-2517 (2015).
[Crossref]

2013 (1)

W. Li, F. Kong, and J. Yao, “Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator,” J. Lightw. Technol. 31, 3780-3786 (2013).
[Crossref]

2011 (1)

J. Sun, Y. Huang, H. Li, and C. Jiang, “Photonic generation of microwave signals using dual-wavelength single-longitudinal-mode fiber lasers,” Optik 122, 764-768 (2011).
[Crossref]

2008 (1)

2007 (2)

Y. Yan and J. P. Yao, “A tunable photonic microwave filter with complex coefficient using an optical RF phase shifter,” IEEE Photon. Technol. Lett. 19, 1472-1474 (2007).
[Crossref]

Q. Wang, J. P. Yao, and J. D. Bull, “Negative tap photonic microwave filter based on a Mach-Zehnder modulator and a tunable optical polarizer,” IEEE Photon. Technol. Lett. 19, 1750-1752 (2007).
[Crossref]

2006 (3)

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with alloptical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744-1746 (2006).
[Crossref]

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Techn. 54, 804-809 (2006).
[Crossref]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol. 24, 201-229 (2006).
[Crossref]

2005 (1)

J. Mora, A. Martinez, M. D. Manzanedo, J. Capmany, B. Ortega, and D. Pastor, “Microwave photonic filters with arbitrary positive and negative coefficients using multiple phase inversion in SOA based XGM wavelength converter,” Electron. Lett. 41, 921-922 (2005).
[Crossref]

2004 (1)

2003 (1)

2000 (1)

X. S. Yao, “Polarization insensitive antenna remoting link with frequency conversion gain,” IEEE Photon. Technol. Lett. 12, 1382-1384 (2000).
[Crossref]

1997 (1)

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, “All-optical RF filter using amplitude inversion in a semiconductor optical amplifier,” IEEE Trans. Microw. Theory Techn. 45, 1473-1477 (1997).
[Crossref]

1995 (1)

J. Capmany, J. Cascon, J. L. Martin, S. Sales, D. Pastor, and J. Marti, “Synthesis of fiber-optic delay line filters,” IEEE Trans. Microw. Theory Techn. 13, 2003-2012 (1995).

Bull, J. D.

Q. Wang, J. P. Yao, and J. D. Bull, “Negative tap photonic microwave filter based on a Mach-Zehnder modulator and a tunable optical polarizer,” IEEE Photon. Technol. Lett. 19, 1750-1752 (2007).
[Crossref]

Capmany, J.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with alloptical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744-1746 (2006).
[Crossref]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol. 24, 201-229 (2006).
[Crossref]

J. Mora, A. Martinez, M. D. Manzanedo, J. Capmany, B. Ortega, and D. Pastor, “Microwave photonic filters with arbitrary positive and negative coefficients using multiple phase inversion in SOA based XGM wavelength converter,” Electron. Lett. 41, 921-922 (2005).
[Crossref]

J. Capmany, D. Pastor, A. Martinez, B. Ortega, and S. Sales, “Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator,” Opt. Lett. 28, 1415-1417 (2003).
[Crossref]

J. Capmany, J. Cascon, J. L. Martin, S. Sales, D. Pastor, and J. Marti, “Synthesis of fiber-optic delay line filters,” IEEE Trans. Microw. Theory Techn. 13, 2003-2012 (1995).

Cascon, J.

J. Capmany, J. Cascon, J. L. Martin, S. Sales, D. Pastor, and J. Marti, “Synthesis of fiber-optic delay line filters,” IEEE Trans. Microw. Theory Techn. 13, 2003-2012 (1995).

Chen, H.

M. Chen, J. Yang, P. Sheng, X. Tong, and H. Chen, “Tunable microwave generation method based on birefringence photonic crystal fiber,” Optik 127, 5990-5999 (2016).
[Crossref]

Chen, M.

M. Chen, J. Yang, P. Sheng, X. Tong, and H. Chen, “Tunable microwave generation method based on birefringence photonic crystal fiber,” Optik 127, 5990-5999 (2016).
[Crossref]

Chen, W. Y.

J. Guo, J. Li, Y. Zhang, Y. C. Xiao, and W. Y. Chen, “The study of an ultrawide tunable range single passband microwave photonic notch filter,” Optik 126, 2512-2517 (2015).
[Crossref]

Chen, X.

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Techn. 54, 804-809 (2006).
[Crossref]

Chen, Y.

Y. Teng, Y. Chen, B. Zhang, P. Zhang, and Y. Li, “Photonic generation of frequency-decupled microwave signal based on cascaded Mach-Zehnder modulators,” Optik 127, 9275-9279 (2016).
[Crossref]

Coppinger, F.

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, “All-optical RF filter using amplitude inversion in a semiconductor optical amplifier,” IEEE Trans. Microw. Theory Techn. 45, 1473-1477 (1997).
[Crossref]

Dai, Y.

Deng, Z.

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Techn. 54, 804-809 (2006).
[Crossref]

Drummond, M. V.

V. C. Duarte, M. V. Drummond, and R. N. Nogueira, “Photonic true-time-delay beamformer for a phased array antenna receiver based on self-heterodyne detection,” J. Lightw. Technol. 34, 5566-5575 (2016).
[Crossref]

Duarte, V. C.

V. C. Duarte, M. V. Drummond, and R. N. Nogueira, “Photonic true-time-delay beamformer for a phased array antenna receiver based on self-heterodyne detection,” J. Lightw. Technol. 34, 5566-5575 (2016).
[Crossref]

Gu, W.

Y. Wei, S. Huang, K. Sun, Q. Wang, and W. Gu, “Broadband and tunable RF photonic phase shifter based on optical SSB modulation and FBG filtering,” Optik 127, 700-702 (2016).
[Crossref]

Guo, J.

J. Guo, J. Li, Y. Zhang, Y. C. Xiao, and W. Y. Chen, “The study of an ultrawide tunable range single passband microwave photonic notch filter,” Optik 126, 2512-2517 (2015).
[Crossref]

Huang, S.

Y. Wei, S. Huang, K. Sun, Q. Wang, and W. Gu, “Broadband and tunable RF photonic phase shifter based on optical SSB modulation and FBG filtering,” Optik 127, 700-702 (2016).
[Crossref]

Huang, Y.

J. Sun, Y. Huang, H. Li, and C. Jiang, “Photonic generation of microwave signals using dual-wavelength single-longitudinal-mode fiber lasers,” Optik 122, 764-768 (2011).
[Crossref]

Jalali, B.

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, “All-optical RF filter using amplitude inversion in a semiconductor optical amplifier,” IEEE Trans. Microw. Theory Techn. 45, 1473-1477 (1997).
[Crossref]

Jiang, C.

J. Sun, Y. Huang, H. Li, and C. Jiang, “Photonic generation of microwave signals using dual-wavelength single-longitudinal-mode fiber lasers,” Optik 122, 764-768 (2011).
[Crossref]

Kong, F.

W. Li, F. Kong, and J. Yao, “Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator,” J. Lightw. Technol. 31, 3780-3786 (2013).
[Crossref]

Li, H.

J. Sun, Y. Huang, H. Li, and C. Jiang, “Photonic generation of microwave signals using dual-wavelength single-longitudinal-mode fiber lasers,” Optik 122, 764-768 (2011).
[Crossref]

Li, J.

J. Guo, J. Li, Y. Zhang, Y. C. Xiao, and W. Y. Chen, “The study of an ultrawide tunable range single passband microwave photonic notch filter,” Optik 126, 2512-2517 (2015).
[Crossref]

Li, W.

W. Li, F. Kong, and J. Yao, “Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator,” J. Lightw. Technol. 31, 3780-3786 (2013).
[Crossref]

Li, Y.

Y. Teng, Y. Chen, B. Zhang, P. Zhang, and Y. Li, “Photonic generation of frequency-decupled microwave signal based on cascaded Mach-Zehnder modulators,” Optik 127, 9275-9279 (2016).
[Crossref]

Loayssa, A.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with alloptical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744-1746 (2006).
[Crossref]

Manzanedo, M. D.

J. Mora, A. Martinez, M. D. Manzanedo, J. Capmany, B. Ortega, and D. Pastor, “Microwave photonic filters with arbitrary positive and negative coefficients using multiple phase inversion in SOA based XGM wavelength converter,” Electron. Lett. 41, 921-922 (2005).
[Crossref]

Marti, J.

J. Capmany, J. Cascon, J. L. Martin, S. Sales, D. Pastor, and J. Marti, “Synthesis of fiber-optic delay line filters,” IEEE Trans. Microw. Theory Techn. 13, 2003-2012 (1995).

Martin, J. L.

J. Capmany, J. Cascon, J. L. Martin, S. Sales, D. Pastor, and J. Marti, “Synthesis of fiber-optic delay line filters,” IEEE Trans. Microw. Theory Techn. 13, 2003-2012 (1995).

Martinez, A.

J. Mora, A. Martinez, M. D. Manzanedo, J. Capmany, B. Ortega, and D. Pastor, “Microwave photonic filters with arbitrary positive and negative coefficients using multiple phase inversion in SOA based XGM wavelength converter,” Electron. Lett. 41, 921-922 (2005).
[Crossref]

J. Capmany, D. Pastor, A. Martinez, B. Ortega, and S. Sales, “Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator,” Opt. Lett. 28, 1415-1417 (2003).
[Crossref]

Mora, J.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with alloptical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744-1746 (2006).
[Crossref]

J. Mora, A. Martinez, M. D. Manzanedo, J. Capmany, B. Ortega, and D. Pastor, “Microwave photonic filters with arbitrary positive and negative coefficients using multiple phase inversion in SOA based XGM wavelength converter,” Electron. Lett. 41, 921-922 (2005).
[Crossref]

Nogueira, R. N.

V. C. Duarte, M. V. Drummond, and R. N. Nogueira, “Photonic true-time-delay beamformer for a phased array antenna receiver based on self-heterodyne detection,” J. Lightw. Technol. 34, 5566-5575 (2016).
[Crossref]

Ortega, B.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol. 24, 201-229 (2006).
[Crossref]

J. Mora, A. Martinez, M. D. Manzanedo, J. Capmany, B. Ortega, and D. Pastor, “Microwave photonic filters with arbitrary positive and negative coefficients using multiple phase inversion in SOA based XGM wavelength converter,” Electron. Lett. 41, 921-922 (2005).
[Crossref]

J. Capmany, D. Pastor, A. Martinez, B. Ortega, and S. Sales, “Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator,” Opt. Lett. 28, 1415-1417 (2003).
[Crossref]

Pastor, D.

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol. 24, 201-229 (2006).
[Crossref]

J. Mora, A. Martinez, M. D. Manzanedo, J. Capmany, B. Ortega, and D. Pastor, “Microwave photonic filters with arbitrary positive and negative coefficients using multiple phase inversion in SOA based XGM wavelength converter,” Electron. Lett. 41, 921-922 (2005).
[Crossref]

J. Capmany, D. Pastor, A. Martinez, B. Ortega, and S. Sales, “Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator,” Opt. Lett. 28, 1415-1417 (2003).
[Crossref]

J. Capmany, J. Cascon, J. L. Martin, S. Sales, D. Pastor, and J. Marti, “Synthesis of fiber-optic delay line filters,” IEEE Trans. Microw. Theory Techn. 13, 2003-2012 (1995).

Sagues, M.

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with alloptical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744-1746 (2006).
[Crossref]

Sales, S.

J. Capmany, D. Pastor, A. Martinez, B. Ortega, and S. Sales, “Microwave photonic filters with negative coefficients based on phase inversion in an electro-optic modulator,” Opt. Lett. 28, 1415-1417 (2003).
[Crossref]

J. Capmany, J. Cascon, J. L. Martin, S. Sales, D. Pastor, and J. Marti, “Synthesis of fiber-optic delay line filters,” IEEE Trans. Microw. Theory Techn. 13, 2003-2012 (1995).

Sheng, P.

M. Chen, J. Yang, P. Sheng, X. Tong, and H. Chen, “Tunable microwave generation method based on birefringence photonic crystal fiber,” Optik 127, 5990-5999 (2016).
[Crossref]

Sun, J.

J. Sun, Y. Huang, H. Li, and C. Jiang, “Photonic generation of microwave signals using dual-wavelength single-longitudinal-mode fiber lasers,” Optik 122, 764-768 (2011).
[Crossref]

Sun, K.

Y. Wei, S. Huang, K. Sun, Q. Wang, and W. Gu, “Broadband and tunable RF photonic phase shifter based on optical SSB modulation and FBG filtering,” Optik 127, 700-702 (2016).
[Crossref]

Teng, Y.

Y. Teng, Y. Chen, B. Zhang, P. Zhang, and Y. Li, “Photonic generation of frequency-decupled microwave signal based on cascaded Mach-Zehnder modulators,” Optik 127, 9275-9279 (2016).
[Crossref]

Tong, X.

M. Chen, J. Yang, P. Sheng, X. Tong, and H. Chen, “Tunable microwave generation method based on birefringence photonic crystal fiber,” Optik 127, 5990-5999 (2016).
[Crossref]

Trinh, P. D.

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, “All-optical RF filter using amplitude inversion in a semiconductor optical amplifier,” IEEE Trans. Microw. Theory Techn. 45, 1473-1477 (1997).
[Crossref]

Wang, Q.

Y. Wei, S. Huang, K. Sun, Q. Wang, and W. Gu, “Broadband and tunable RF photonic phase shifter based on optical SSB modulation and FBG filtering,” Optik 127, 700-702 (2016).
[Crossref]

Q. Wang, J. P. Yao, and J. D. Bull, “Negative tap photonic microwave filter based on a Mach-Zehnder modulator and a tunable optical polarizer,” IEEE Photon. Technol. Lett. 19, 1750-1752 (2007).
[Crossref]

Wei, Y.

Y. Wei, S. Huang, K. Sun, Q. Wang, and W. Gu, “Broadband and tunable RF photonic phase shifter based on optical SSB modulation and FBG filtering,” Optik 127, 700-702 (2016).
[Crossref]

Xiao, Y. C.

J. Guo, J. Li, Y. Zhang, Y. C. Xiao, and W. Y. Chen, “The study of an ultrawide tunable range single passband microwave photonic notch filter,” Optik 126, 2512-2517 (2015).
[Crossref]

Yan, Y.

Y. Yan and J. P. Yao, “A tunable photonic microwave filter with complex coefficient using an optical RF phase shifter,” IEEE Photon. Technol. Lett. 19, 1472-1474 (2007).
[Crossref]

Yang, J.

M. Chen, J. Yang, P. Sheng, X. Tong, and H. Chen, “Tunable microwave generation method based on birefringence photonic crystal fiber,” Optik 127, 5990-5999 (2016).
[Crossref]

Yao, J.

W. Li, F. Kong, and J. Yao, “Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator,” J. Lightw. Technol. 31, 3780-3786 (2013).
[Crossref]

Y. Dai and J. Yao, “Nonuniformly-spaced photonic microwave delay line filter,” Opt. Express 16, 4713-4718 (2008).
[Crossref]

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Techn. 54, 804-809 (2006).
[Crossref]

F. Zeng and J. Yao, “All-optical bandpass microwave filter based on an electro-optic phase modulator,” Opt. Express 12, 3814-3819 (2004).
[Crossref]

Yao, J. P.

Y. Yan and J. P. Yao, “A tunable photonic microwave filter with complex coefficient using an optical RF phase shifter,” IEEE Photon. Technol. Lett. 19, 1472-1474 (2007).
[Crossref]

Q. Wang, J. P. Yao, and J. D. Bull, “Negative tap photonic microwave filter based on a Mach-Zehnder modulator and a tunable optical polarizer,” IEEE Photon. Technol. Lett. 19, 1750-1752 (2007).
[Crossref]

Yao, X. S.

X. S. Yao, “Polarization insensitive antenna remoting link with frequency conversion gain,” IEEE Photon. Technol. Lett. 12, 1382-1384 (2000).
[Crossref]

Yegnanarayanan, S.

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, “All-optical RF filter using amplitude inversion in a semiconductor optical amplifier,” IEEE Trans. Microw. Theory Techn. 45, 1473-1477 (1997).
[Crossref]

Zeng, F.

Zhang, B.

Y. Teng, Y. Chen, B. Zhang, P. Zhang, and Y. Li, “Photonic generation of frequency-decupled microwave signal based on cascaded Mach-Zehnder modulators,” Optik 127, 9275-9279 (2016).
[Crossref]

Zhang, P.

Y. Teng, Y. Chen, B. Zhang, P. Zhang, and Y. Li, “Photonic generation of frequency-decupled microwave signal based on cascaded Mach-Zehnder modulators,” Optik 127, 9275-9279 (2016).
[Crossref]

Zhang, Y.

J. Guo, J. Li, Y. Zhang, Y. C. Xiao, and W. Y. Chen, “The study of an ultrawide tunable range single passband microwave photonic notch filter,” Optik 126, 2512-2517 (2015).
[Crossref]

Electron. Lett. (1)

J. Mora, A. Martinez, M. D. Manzanedo, J. Capmany, B. Ortega, and D. Pastor, “Microwave photonic filters with arbitrary positive and negative coefficients using multiple phase inversion in SOA based XGM wavelength converter,” Electron. Lett. 41, 921-922 (2005).
[Crossref]

IEEE Photon. Technol. Lett. (4)

A. Loayssa, J. Capmany, M. Sagues, and J. Mora, “Demonstration of incoherent microwave photonic filters with alloptical complex coefficients,” IEEE Photon. Technol. Lett. 18, 1744-1746 (2006).
[Crossref]

Y. Yan and J. P. Yao, “A tunable photonic microwave filter with complex coefficient using an optical RF phase shifter,” IEEE Photon. Technol. Lett. 19, 1472-1474 (2007).
[Crossref]

X. S. Yao, “Polarization insensitive antenna remoting link with frequency conversion gain,” IEEE Photon. Technol. Lett. 12, 1382-1384 (2000).
[Crossref]

Q. Wang, J. P. Yao, and J. D. Bull, “Negative tap photonic microwave filter based on a Mach-Zehnder modulator and a tunable optical polarizer,” IEEE Photon. Technol. Lett. 19, 1750-1752 (2007).
[Crossref]

IEEE Trans. Microw. Theory Techn (1)

X. Chen, Z. Deng, and J. Yao, “Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser,” IEEE Trans. Microw. Theory Techn. 54, 804-809 (2006).
[Crossref]

IEEE Trans. Microw. Theory Techn. (2)

J. Capmany, J. Cascon, J. L. Martin, S. Sales, D. Pastor, and J. Marti, “Synthesis of fiber-optic delay line filters,” IEEE Trans. Microw. Theory Techn. 13, 2003-2012 (1995).

F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, “All-optical RF filter using amplitude inversion in a semiconductor optical amplifier,” IEEE Trans. Microw. Theory Techn. 45, 1473-1477 (1997).
[Crossref]

J. Lightw. Technol. (3)

V. C. Duarte, M. V. Drummond, and R. N. Nogueira, “Photonic true-time-delay beamformer for a phased array antenna receiver based on self-heterodyne detection,” J. Lightw. Technol. 34, 5566-5575 (2016).
[Crossref]

W. Li, F. Kong, and J. Yao, “Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator,” J. Lightw. Technol. 31, 3780-3786 (2013).
[Crossref]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightw. Technol. 24, 201-229 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Optik (5)

J. Guo, J. Li, Y. Zhang, Y. C. Xiao, and W. Y. Chen, “The study of an ultrawide tunable range single passband microwave photonic notch filter,” Optik 126, 2512-2517 (2015).
[Crossref]

Y. Wei, S. Huang, K. Sun, Q. Wang, and W. Gu, “Broadband and tunable RF photonic phase shifter based on optical SSB modulation and FBG filtering,” Optik 127, 700-702 (2016).
[Crossref]

M. Chen, J. Yang, P. Sheng, X. Tong, and H. Chen, “Tunable microwave generation method based on birefringence photonic crystal fiber,” Optik 127, 5990-5999 (2016).
[Crossref]

Y. Teng, Y. Chen, B. Zhang, P. Zhang, and Y. Li, “Photonic generation of frequency-decupled microwave signal based on cascaded Mach-Zehnder modulators,” Optik 127, 9275-9279 (2016).
[Crossref]

J. Sun, Y. Huang, H. Li, and C. Jiang, “Photonic generation of microwave signals using dual-wavelength single-longitudinal-mode fiber lasers,” Optik 122, 764-768 (2011).
[Crossref]

Other (1)

A. Vilcot, B. Cabon, and J. Chazelas, (Eds.) Microwave Photonics (Kluwer Academic Publishers, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.