Abstract

Solar radiation data measured by pyranometers is of fundamental use in various fields. In the field of atmospheric optics, the measurement of solar energy must be precise, and the equipment needs to be maintained frequently. However, there seem to be many errors with the existing type of pyranometer, which is an element of the solar-energy observation apparatus. In particular, the error caused by the thermal dome effect occurs because of the thermal offset generated from a temperature difference between outer dome and inner casing. To resolve the thermal dome effect, intensive observation was conducted using the method and instrument designed by Ji and Tsay. The characteristics of the observed global solar radiation were analyzed by classifying the observation period into clear, cloudy, and rainy cases. For the clear-weather case, the temperature difference between the pyranometer’s case and dome was highest, and the thermal dome effect was 0.88 MJ m-2 day-1. Meanwhile, the thermal dome effect in the cloudy case was 0.69 MJ m-2 day-1, because the reduced global solar radiation thus reduced the temperature difference between case and dome. In addition, the rainy case had the smallest temperature difference of 0.21 MJ m-2 day-1. The quantification of this thermal dome effect with respect to the daily accumulated global solar radiation gives calculated errors in the cloudy, rainy, and clear cases of 6.53%, 6.38%, and 5.41% respectively.

PDF Article

References

  • View by:
  • |

  1. D. R. Myers, I. Reda, S. Wilcox, and A. AndreasOptical radiation measurements for photovoltaic applications: instrumentation uncertainty and performanceInternational Symposium on Optical Science and Technology, SPIE’s 49thUSA2004
  2. B. ViorelModeling solar radiation at the Earth surfaceSpringerVerlag Berlin Heidelberg, Germany2008125
  3. K. L. CoulsonSolar and terrestrial radiation, methods and measurementsAcademic PressNew York, USA19751119
  4. NRELUser’s manual-1961-1990 national solar radiation data base, version 1.0. NSRDB-volume 1. NREL/TP-463-4859National Renewable Energy LaboratoryColorado, USA1992243
  5. W. J. H. MollA thermopile for measuring radiationProc. Phys. Soc., London Sect. B1923257260
  6. V. Frank, M. Joseph, and S. ThomasSolar and infrared radiation measurementsCRC PressNew York, USA201213
  7. H. Ohtake, K. Shimose, J. G. Silva, T. Takashima, T. Oozeki, and Y. YamadaAccuracy of the solar irradiance forecasts of the Japan meteorological Agency mesoscale model for the Kanto region, JapanSol. Energy201398138152
  8. IECIEC 60904-2: Photovoltaic device-Part2: requirements for reference solar cellInternational Electrotechnical Commission, IECGeneva, Switzerland2007
  9. WMOGuide to meteorological instrument and methods of observation, secretariat of the world meteorological organization: chapter 7 measurement of radiationWMOSwitzerland1997
  10. C. FröhlichWorld radiometric reference: WMO/CIMO final report197797100
  11. A. SmithPrediction and measurement of thermal exchanges within pyranometers, MS ThesisVirginia Polytechnic Institute19998
  12. JCGMEvaluationof Measurement Data - Guide to the expression ofuncertainty in measurementBureau International des Poids et MesuresFrance2008GUM 1995 with minor revisions
  13. I. Reda, D. Myers, and T. StoffelUncertainty estimate for the outdoor calibration of solar pyranometers: a meteorologist perspectiveNCSLI (National Conference of Standards International) J. Meas. Sci.2008345866
  14. S. Walker, A. Andreas, I. Reda, and D. A. McSparronNBS measurement services: spectral irradiance calibrationsU.S. Department of Commerce, National Bureau of StandardsWashington, DC: U.S.19872022
  15. E. G. Dutton, J. J. Michalsky, T. Stoffel, B. W. Forgan, J. Hickey, D. W. Nelson, T. L. Alberta, and I. RedaMeasurement of broadband diffuse solar irradiance using current commercial instrumentation with a correction for thermal offset errorJ. Atmos. Oceanic Technol.200118297314
  16. S. Kato, T. P. Acjerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesley, F. Murcray, and J. MichalskyUncertainties in modeled and measured clear-sky surface shortwave irradianceJ. Geophys. Earth Res.199732222588125898
  17. A. J. Drummond and J. J. RocheCorrections to be applied to measurements made with appley (and other) spectral radiometers when used with schott colored glass filtersJ. App. Meteorol.19654741744
  18. M. Wild, A. Ohmura, H. Gilgen, E. Roeckner, M. Giorgetta, and J. MorcretteThe dispersion of radiative energy in the global climate system: GCM versus observational estimatesClim. Dyn.199814853869
  19. R. PhiliponaUnderestimation of solar global and diffuse radiation measured at Earth’s surfaceJ. Geophys. Res.2002107224654
  20. Q. Ji and S. C. TsayA novel nonintrusive method to resolve the thermal dome effect of pyranometers: instrumentation and observational basisJ. Geophys. Res.2010115
  21. B. A. CarniceroCharacterization of pyranometer thermal offset and correction of historical data, Master of Science thesisDept. of Mechanical Engineering, Virginia Polytechnic Institute and State UniversityUSA200125
  22. Q. Ji, S. C. Tsay, K. M. Lau, R. A. Hansell, J. J. Butler, and J. W. CooperA novel nonintrusive method to resolve the thermal dome effect of pyranometers: radiometric calibration and implicationsJ. Geophys. Res.2011116
  23. M. Haeffelin, S. Kato, A. M. Smith, C. Ken Rutledge, T. P. Charlock, and J. Robert MahanDetermination of the thermal offset of the EPPLEY precision spectral pyranometerAppl. Opt.2001404472484
  24. B. M. HickeyPhysical Oceanography, Ecology of the Southern California BightUniversity of California PressBerkeley, California, USA19931970
  25. I. S. Zo, M. J. Jeong, K. T. Lee, J. B. Jee, and B. Y. KimTemperature correction of solar radiation on clear sky using by modified pyranometerJ. Kor. Sol. Energy Soc.2015351919
  26. Z. Wang, D. Liu, C. Xie, and J. ZhouAn iterative algorithm to estimate LIDAR ratio for thin cirrus cloud over aerosol layerJ. Opt. Soc. Kor.2011153209215
  27. B. Y. Kim, J. B. Jee, I. S. Zo, and K. T. LeeCloud cover retrieved from skyviewer: a validation with human observationsAsia-Pac. J. Atmos. Sci.2016521110
  28. H. S. Koh, W. S. Shin, M. Y. Jeon, and B. S. ParkThe variation of radiation transmittance by the cw 1.07 μm fiber laser and water aerosol interactionJ. Opt. Soc. Kor.2012163191195
  29. K. H. Lee, D. Muller, Y. M. Noh, S. K. Shin, and D. H. ShinDepolarization ratio retrievals using AERONET Sun photometer dataJ. Opt. Soc. Kor.2010143178184

Other (29)

D. R. Myers, I. Reda, S. Wilcox, and A. AndreasOptical radiation measurements for photovoltaic applications: instrumentation uncertainty and performanceInternational Symposium on Optical Science and Technology, SPIE’s 49thUSA2004

B. ViorelModeling solar radiation at the Earth surfaceSpringerVerlag Berlin Heidelberg, Germany2008125

K. L. CoulsonSolar and terrestrial radiation, methods and measurementsAcademic PressNew York, USA19751119

NRELUser’s manual-1961-1990 national solar radiation data base, version 1.0. NSRDB-volume 1. NREL/TP-463-4859National Renewable Energy LaboratoryColorado, USA1992243

W. J. H. MollA thermopile for measuring radiationProc. Phys. Soc., London Sect. B1923257260

V. Frank, M. Joseph, and S. ThomasSolar and infrared radiation measurementsCRC PressNew York, USA201213

H. Ohtake, K. Shimose, J. G. Silva, T. Takashima, T. Oozeki, and Y. YamadaAccuracy of the solar irradiance forecasts of the Japan meteorological Agency mesoscale model for the Kanto region, JapanSol. Energy201398138152

IECIEC 60904-2: Photovoltaic device-Part2: requirements for reference solar cellInternational Electrotechnical Commission, IECGeneva, Switzerland2007

WMOGuide to meteorological instrument and methods of observation, secretariat of the world meteorological organization: chapter 7 measurement of radiationWMOSwitzerland1997

C. FröhlichWorld radiometric reference: WMO/CIMO final report197797100

A. SmithPrediction and measurement of thermal exchanges within pyranometers, MS ThesisVirginia Polytechnic Institute19998

JCGMEvaluationof Measurement Data - Guide to the expression ofuncertainty in measurementBureau International des Poids et MesuresFrance2008GUM 1995 with minor revisions

I. Reda, D. Myers, and T. StoffelUncertainty estimate for the outdoor calibration of solar pyranometers: a meteorologist perspectiveNCSLI (National Conference of Standards International) J. Meas. Sci.2008345866

S. Walker, A. Andreas, I. Reda, and D. A. McSparronNBS measurement services: spectral irradiance calibrationsU.S. Department of Commerce, National Bureau of StandardsWashington, DC: U.S.19872022

E. G. Dutton, J. J. Michalsky, T. Stoffel, B. W. Forgan, J. Hickey, D. W. Nelson, T. L. Alberta, and I. RedaMeasurement of broadband diffuse solar irradiance using current commercial instrumentation with a correction for thermal offset errorJ. Atmos. Oceanic Technol.200118297314

S. Kato, T. P. Acjerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesley, F. Murcray, and J. MichalskyUncertainties in modeled and measured clear-sky surface shortwave irradianceJ. Geophys. Earth Res.199732222588125898

A. J. Drummond and J. J. RocheCorrections to be applied to measurements made with appley (and other) spectral radiometers when used with schott colored glass filtersJ. App. Meteorol.19654741744

M. Wild, A. Ohmura, H. Gilgen, E. Roeckner, M. Giorgetta, and J. MorcretteThe dispersion of radiative energy in the global climate system: GCM versus observational estimatesClim. Dyn.199814853869

R. PhiliponaUnderestimation of solar global and diffuse radiation measured at Earth’s surfaceJ. Geophys. Res.2002107224654

Q. Ji and S. C. TsayA novel nonintrusive method to resolve the thermal dome effect of pyranometers: instrumentation and observational basisJ. Geophys. Res.2010115

B. A. CarniceroCharacterization of pyranometer thermal offset and correction of historical data, Master of Science thesisDept. of Mechanical Engineering, Virginia Polytechnic Institute and State UniversityUSA200125

Q. Ji, S. C. Tsay, K. M. Lau, R. A. Hansell, J. J. Butler, and J. W. CooperA novel nonintrusive method to resolve the thermal dome effect of pyranometers: radiometric calibration and implicationsJ. Geophys. Res.2011116

M. Haeffelin, S. Kato, A. M. Smith, C. Ken Rutledge, T. P. Charlock, and J. Robert MahanDetermination of the thermal offset of the EPPLEY precision spectral pyranometerAppl. Opt.2001404472484

B. M. HickeyPhysical Oceanography, Ecology of the Southern California BightUniversity of California PressBerkeley, California, USA19931970

I. S. Zo, M. J. Jeong, K. T. Lee, J. B. Jee, and B. Y. KimTemperature correction of solar radiation on clear sky using by modified pyranometerJ. Kor. Sol. Energy Soc.2015351919

Z. Wang, D. Liu, C. Xie, and J. ZhouAn iterative algorithm to estimate LIDAR ratio for thin cirrus cloud over aerosol layerJ. Opt. Soc. Kor.2011153209215

B. Y. Kim, J. B. Jee, I. S. Zo, and K. T. LeeCloud cover retrieved from skyviewer: a validation with human observationsAsia-Pac. J. Atmos. Sci.2016521110

H. S. Koh, W. S. Shin, M. Y. Jeon, and B. S. ParkThe variation of radiation transmittance by the cw 1.07 μm fiber laser and water aerosol interactionJ. Opt. Soc. Kor.2012163191195

K. H. Lee, D. Muller, Y. M. Noh, S. K. Shin, and D. H. ShinDepolarization ratio retrievals using AERONET Sun photometer dataJ. Opt. Soc. Kor.2010143178184

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.