Abstract

In this study, an ultraviolet Raman spectrometer was designed and fabricated to detect chemical contamination on the ground. The region of the Raman spectrum that indicated the characteristics of the chemicals was 350-3800 cm-1. To fabricate a Raman spectrometer operating in this range, the layout and angle of optical components of the spectrometer were designed using a grating equation. Experimental devices were configured to measure the Raman spectra of chemicals based on the fabricated Raman spectrometer. The wavenumber of the spectrometer was calibrated by measuring the Raman spectrum of polytetra-fluoroethylene, O2, and N2. The spectral range of the spectrometer was measured to be 23.46 nm (3442 cm-1) with a resolution of 0.195 nm (30.3 cm-1) at 253.65 nm. After calibration, the main Raman peaks of cyclohexane, methanol, and acetonitrile were found to be similar to the references within a relative error of 0.55%.

PDF Article

References

  • View by:
  • |

  1. E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. FeldProspects for in vivo Raman spectroscopyPhys. Med. Biol.200045R1R59
  2. D. H. M. Lin, D. Manara, P. Lindqvist-Reis, T. Fanghänel, and K. MayerThe use of different dispersive Raman spectrometers for the analysis of uranium compoundsVib. Spectrosc.201473102110
  3. J. Zhao and R. L. McCreeryMultichannel FT-Raman spectroscopy: Noise analysis and performance assessmentAppl. Spectrosc.19975116871697
  4. V. Pajcini, C. H. Munro, R. W. Bormett, R. E. Witkowski, and S. A. AsherUV Raman microspectroscopy: Spectral and spatial selectivity with sensitivity and simplicityAppl. Spectrosc.1997518186
  5. S. Jin, Z. Feng, F. Fan, and C. LiUV Raman spectroscopic characterization of catalysts and catalytic active sitesCatal. Lett.2015145468481
  6. R. Bhartia, W. F. Hugb, and R. D. ReidImproved sensing using simultaneous deep UV Raman and fluorescence detectionProc. SPIE201283581983581A
  7. C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. CiceroneHigh-speed coherent Raman fingerprint imaging of biological tissuesNature Photon.20148627634
  8. E. L. Izake, S. Sundarajoo, W. Olds, B. Cletus, E. Jaatinen, and P. M. FredericksStandoff Raman spectrometry for the non-invasive detection of explosives precursors in highly fluorescing packagingTalanta20131032027
  9. Y. Wu, Y. Tang, and G. NiDesign of FUV imaging spectrometer based on crossed Czerny-Turner structureProc. SPIE2009715617715628
  10. S. M. NortonHigh-throughput spectrometer designs in a compact form-factor: Principles and applicationsProc. SPIE2013872611187260L
  11. P. J. Larkin, W. G. Gustafson, and S. A. AsherA new Raman cross section measurement technique monitors the tyrosine environmental dependence of the electromagnetic field strengthJ. Chem. Phys.19919453245330
  12. A. Gruger, A. Regis, T. Schatko, and P. ColombanNanostructure of Nafion® membranes at different states of hydration: An IR and Raman studyVib. Spectrosc.200126215225
  13. C. Wang, Y.-L. Pan, S. C. Hill, and B. ReddingPhoto-phoretic trapping-Raman spectroscopy for single pollens and fungal spores trapped in airQSRT2015153412
  14. M. L. Frezzotti, F. Tecce, and A. CasagliRaman spectroscopy for fluid inclusion analysisJGE2012112120
  15. H. Hamaguchi and A. HirakawaRaman spectroscopyKookmin UniversityKorea2006240256

Other (15)

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. FeldProspects for in vivo Raman spectroscopyPhys. Med. Biol.200045R1R59

D. H. M. Lin, D. Manara, P. Lindqvist-Reis, T. Fanghänel, and K. MayerThe use of different dispersive Raman spectrometers for the analysis of uranium compoundsVib. Spectrosc.201473102110

J. Zhao and R. L. McCreeryMultichannel FT-Raman spectroscopy: Noise analysis and performance assessmentAppl. Spectrosc.19975116871697

V. Pajcini, C. H. Munro, R. W. Bormett, R. E. Witkowski, and S. A. AsherUV Raman microspectroscopy: Spectral and spatial selectivity with sensitivity and simplicityAppl. Spectrosc.1997518186

S. Jin, Z. Feng, F. Fan, and C. LiUV Raman spectroscopic characterization of catalysts and catalytic active sitesCatal. Lett.2015145468481

R. Bhartia, W. F. Hugb, and R. D. ReidImproved sensing using simultaneous deep UV Raman and fluorescence detectionProc. SPIE201283581983581A

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. Hight Walker, J. N. Rich, J. D. Lathia, and M. T. CiceroneHigh-speed coherent Raman fingerprint imaging of biological tissuesNature Photon.20148627634

E. L. Izake, S. Sundarajoo, W. Olds, B. Cletus, E. Jaatinen, and P. M. FredericksStandoff Raman spectrometry for the non-invasive detection of explosives precursors in highly fluorescing packagingTalanta20131032027

Y. Wu, Y. Tang, and G. NiDesign of FUV imaging spectrometer based on crossed Czerny-Turner structureProc. SPIE2009715617715628

S. M. NortonHigh-throughput spectrometer designs in a compact form-factor: Principles and applicationsProc. SPIE2013872611187260L

P. J. Larkin, W. G. Gustafson, and S. A. AsherA new Raman cross section measurement technique monitors the tyrosine environmental dependence of the electromagnetic field strengthJ. Chem. Phys.19919453245330

A. Gruger, A. Regis, T. Schatko, and P. ColombanNanostructure of Nafion® membranes at different states of hydration: An IR and Raman studyVib. Spectrosc.200126215225

C. Wang, Y.-L. Pan, S. C. Hill, and B. ReddingPhoto-phoretic trapping-Raman spectroscopy for single pollens and fungal spores trapped in airQSRT2015153412

M. L. Frezzotti, F. Tecce, and A. CasagliRaman spectroscopy for fluid inclusion analysisJGE2012112120

H. Hamaguchi and A. HirakawaRaman spectroscopyKookmin UniversityKorea2006240256

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.