Abstract

An adaptive optics system can be simulated or analyzed to predict its closed-loop performance. However, this type of prediction based on various assumptions can occasionally produce outcomes which are far from actual experience. Thus, every adaptive optics system is desired to be tested in a closed loop on an optical test bench before its application to a telescope. In the close-loop test bench, we need an atmospheric simulator that simulates atmospheric disturbances, mostly in phase, in terms of spatial and temporal behavior. We report the development of an atmospheric turbulence simulator consisting of two point sources, a commercially available deformable mirror with a 12×12 actuator array, and two random phase plates. The simulator generates an atmospherically distorted single or binary star with varying stellar magnitudes and angular separations. We conduct a simulation of a binary star by optically combining two point sources mounted on independent precision stages. The light intensity of each source (an LED with a pin hole) is adjustable to the corresponding stellar magnitude, while its angular separation is precisely adjusted by moving the corresponding stage. First, the atmospheric phase disturbance at a single instance, i.e., a phase screen, is generated via a computer simulation based on the thin-layer Kolmogorov atmospheric model and its temporal evolution is predicted based on the frozen flow hypothesis. The deformable mirror is then continuously best-fitted to the time-sequenced phase screens based on the least square method. Similarly, we also implement another simulation by rotating two random phase plates which were manufactured to have atmospheric-disturbance-like residual aberrations. This later method is limited in its ability to simulate atmospheric disturbances, but it is easy and inexpensive to implement. With these two methods, individually or in unison, we can simulate typical atmospheric disturbances observed at the Bohyun Observatory in South Korea, which corresponds to an area from 7 to 15 cm with regard to the Fried parameter at a telescope pupil plane of 500 nm.

PDF Article

References

  • View by:
  • |

  1. J. M. BeckersAdaptive optics for astronomy: principles, performance, and applicationsAnnu. Rev. Astron. Astrophys.1993311362
  2. R. K. TysonAdaptive optics system performance approximations for atmospheric turbulence correctionOpt. Eng.19902911651173
  3. B. W. Frazier, M. Smith, and R. K. TysonPerformance of a compact adaptive-optics systemAppl. Opt.20044342814287
  4. M. A. van Dam, D. Le Mignant, and B. A. MacintoshPerformance of the keck observatory adaptive-optics systemAppl. Opt.20044354585467
  5. B. L. EllerbroekFirst-order performance evaluation of adaptive-optics systems for atmospheric-turbulence compensation in extended-field-of-view astronomical telescopesJ. Opt. Soc. Am. A199411783805
  6. M. Puga, R. López, D. King, and A. OscozGround-based and Airborne Instrumentation for Astronomy VAn atmospheric turbulence and telescope simulator for the development of AOLIProc. SPIE2014914791477V
  7. S. ThomasA simple turbulence simulator for adaptive opticsProc. SPIE20045490766773
  8. J. H. Lee, H. S. Gho, J. I. Lee, Y. C. Lee, U. C. Kang, J. W. Kim, Y. I. Cho, S. J. Kim, K. M. Lee, B. T. Choi, and H. J. CheonA 37ch visible adaptive optics system for wavefront compensationJ. Korean Phys. Soc.200649139144
  9. M. K. Giles, A. Seward, M. A. Vorontsov, J. Rha, and R. JimenezSetting up a liquid crystal phase screen to simulate atmospheric turbulenceProc. SPIE200041248997
  10. T. S. Taylor and D. A. GregoryLaboratory simulation of atmospheric turbulence-induced optical wavefront distortionOpt. Laser Technol.200234665669
  11. L. Hu, L. Xuan, Z. Cao, Q. Mu, D. Li, and Y. LiuA liquid crystal atmospheric turbulence simulatorOpt. Express2006141191111918
  12. E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. DrexlerAdaptive optics with a magnetic deformable mirror: applications in the human eyeOpt. Express20061489008917
  13. K. Ahn, H. Rhee, H. Lee, J. H. Lee, H. Yang, and H. KihmWavefront compensation using a silicon carbide deformable mirror with 37 actuators for adaptive opticsKorean J. Opt. Photon.201627106113
  14. V. I. TatarskiiWave propagation in a turbulent mediumMcGraw-HallNew York1961
  15. D. L. FriedOptical resolution through a randomly inhomogeneous medium for very long and very short exposuresJ. Opt. Soc. Am.19665613721379
  16. J. H. Lee, S. J. Ro, K. Kim, T. Butterley, R. Wilson, Y. Choi, and S. LeeRobotic SLODAR development for seeing evaluations at the Bohyunsan ObservatoryAdvanced Maui Optical and Space Surveillance Technologies Conference2015
  17. R. W. WilsonSLODAR: measuring optical turbulence altitude with a Shack-Hartmann wavefront sensorMon. Not. R. Astron. Soc.2002337103108
  18. T. Butterley, R. W. Wilson, and M. SarazinDetermination of the profile of atmospheric optical turbulence strength from SLODAR dataMon. Not. R. Astron. Soc.2006369835845
  19. Boston Micromachines Corporation - Deformable Mirrorshttp://www.bostonmicromachines.com/
  20. R. G. Lane, A. Glindemann, and J. C. DaintySimulation of a Kolmogorov phase screenWaves in Random Media19922209224
  21. C. M. Harding, R. A. Johnston, and R. G. LaneFast simulation of a Kolmogorov phase screenAppl. Opt.19993821612170

Other (21)

J. M. BeckersAdaptive optics for astronomy: principles, performance, and applicationsAnnu. Rev. Astron. Astrophys.1993311362

R. K. TysonAdaptive optics system performance approximations for atmospheric turbulence correctionOpt. Eng.19902911651173

B. W. Frazier, M. Smith, and R. K. TysonPerformance of a compact adaptive-optics systemAppl. Opt.20044342814287

M. A. van Dam, D. Le Mignant, and B. A. MacintoshPerformance of the keck observatory adaptive-optics systemAppl. Opt.20044354585467

B. L. EllerbroekFirst-order performance evaluation of adaptive-optics systems for atmospheric-turbulence compensation in extended-field-of-view astronomical telescopesJ. Opt. Soc. Am. A199411783805

M. Puga, R. López, D. King, and A. OscozGround-based and Airborne Instrumentation for Astronomy VAn atmospheric turbulence and telescope simulator for the development of AOLIProc. SPIE2014914791477V

S. ThomasA simple turbulence simulator for adaptive opticsProc. SPIE20045490766773

J. H. Lee, H. S. Gho, J. I. Lee, Y. C. Lee, U. C. Kang, J. W. Kim, Y. I. Cho, S. J. Kim, K. M. Lee, B. T. Choi, and H. J. CheonA 37ch visible adaptive optics system for wavefront compensationJ. Korean Phys. Soc.200649139144

M. K. Giles, A. Seward, M. A. Vorontsov, J. Rha, and R. JimenezSetting up a liquid crystal phase screen to simulate atmospheric turbulenceProc. SPIE200041248997

T. S. Taylor and D. A. GregoryLaboratory simulation of atmospheric turbulence-induced optical wavefront distortionOpt. Laser Technol.200234665669

L. Hu, L. Xuan, Z. Cao, Q. Mu, D. Li, and Y. LiuA liquid crystal atmospheric turbulence simulatorOpt. Express2006141191111918

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Považay, and W. DrexlerAdaptive optics with a magnetic deformable mirror: applications in the human eyeOpt. Express20061489008917

K. Ahn, H. Rhee, H. Lee, J. H. Lee, H. Yang, and H. KihmWavefront compensation using a silicon carbide deformable mirror with 37 actuators for adaptive opticsKorean J. Opt. Photon.201627106113

V. I. TatarskiiWave propagation in a turbulent mediumMcGraw-HallNew York1961

D. L. FriedOptical resolution through a randomly inhomogeneous medium for very long and very short exposuresJ. Opt. Soc. Am.19665613721379

J. H. Lee, S. J. Ro, K. Kim, T. Butterley, R. Wilson, Y. Choi, and S. LeeRobotic SLODAR development for seeing evaluations at the Bohyunsan ObservatoryAdvanced Maui Optical and Space Surveillance Technologies Conference2015

R. W. WilsonSLODAR: measuring optical turbulence altitude with a Shack-Hartmann wavefront sensorMon. Not. R. Astron. Soc.2002337103108

T. Butterley, R. W. Wilson, and M. SarazinDetermination of the profile of atmospheric optical turbulence strength from SLODAR dataMon. Not. R. Astron. Soc.2006369835845

Boston Micromachines Corporation - Deformable Mirrorshttp://www.bostonmicromachines.com/

R. G. Lane, A. Glindemann, and J. C. DaintySimulation of a Kolmogorov phase screenWaves in Random Media19922209224

C. M. Harding, R. A. Johnston, and R. G. LaneFast simulation of a Kolmogorov phase screenAppl. Opt.19993821612170

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.