Abstract

Mechanical property of tissue is closely related to diseases such as breast cancer, prostate cancer, cirrhosis of the liver, and atherosclerosis. Therefore measurement of tissue mechanical property is important for a better diagnosis. Ultrasound elastography has been developed as a diagnostic modality for a number of diseases that maps mechanical property of tissue. Optical coherence elastography (OCE) has a higher spatial resolution than ultrasound elastography. OCE, therefore, could be a great help for early diagnosis. In this study, we made tissue phantoms and measured their compressive moduli with a rheometer measuring the response to applied force. Uniaxial strain of the tissue phantom was also measured with OCE by using cross-correlation of speckles and compared with the results from the rheometer. In order to compare stiffness of tissue phantoms by OCE, the applied force should be measured in addition to the strain. We, however, did not use a load cell that directly measures the applied force for each sample. Instead, we utilized one silicone film (called as reference phantom) for all OCE measurements that indirectly indicated the amount of the applied force by deformation. Therefore, all measurements were based on displacement, which was natural and effective for image-based elastography such as OCE.

© 2017 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects”, IEEE Journal of Selected Topics in Quantum Electronics 20, 2, 272-288, 2014.
    [Crossref]
  2. K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue : the 20 year perspective”, Physics in Medicine and Biology, 56, R1-R29, 2011
    [Crossref]
  3. Y. K. Mariappan, K. J Glaser, and R. L. Ehman, “Magnetic resonance elastography: A review”, Clinical Anatomy, 23, 497-511, 2010.
    [Crossref]
  4. X. Liang, V. Crecea, and S. A. Boppart, “Dynamic optical coherence elastography: A review”, Journal of innovative optical health sciences, 3, 4, 221-233, 2010.
    [Crossref]
  5. B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography”, Optics Express, 19, 6623-6634, 2011.
    [Crossref]
  6. M. M. Doyley, “Model-based elastography: a survey of approaches to the inverse elasticity problem,” Phys. Med. Biol., 57 (3), R35-R73, 2012.
  7. W. Drexler, “Ultrahigh-resolution optical coherence tomography”, Journal of Biomedical Optics, 9, 47-74, 2004.
    [Crossref]
  8. V. M. Gelikonov, G. V. Gelikonov, and P. A. Shilyagin, “Linear-Wavenumber Spectrometer for High-Speed Spectral-Domain Optical Coherence Tomography”, Optics and Spectroscopy, 106, 459-465, 2009.
    [Crossref]
  9. J. M. Schmitt, “OCT elastography: imaging microscopic deformation and stain of tissue”, Optics Express, 3, 199-211, 1998.
    [Crossref]
  10. X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties”, Optics Express, 16, 11052-11065, 2008.
    [Crossref]
  11. Y. Gui, S. K. Gil, and G. H. Ryu, “Effects of extrusion condition on the physicochemical properties of extruded red ginseng”, Preventive Nutrition and Food Science, 17, 203-209, 2012.
    [Crossref]

2014 (1)

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects”, IEEE Journal of Selected Topics in Quantum Electronics 20, 2, 272-288, 2014.
[Crossref]

2012 (2)

M. M. Doyley, “Model-based elastography: a survey of approaches to the inverse elasticity problem,” Phys. Med. Biol., 57 (3), R35-R73, 2012.

Y. Gui, S. K. Gil, and G. H. Ryu, “Effects of extrusion condition on the physicochemical properties of extruded red ginseng”, Preventive Nutrition and Food Science, 17, 203-209, 2012.
[Crossref]

2011 (2)

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography”, Optics Express, 19, 6623-6634, 2011.
[Crossref]

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue : the 20 year perspective”, Physics in Medicine and Biology, 56, R1-R29, 2011
[Crossref]

2010 (2)

Y. K. Mariappan, K. J Glaser, and R. L. Ehman, “Magnetic resonance elastography: A review”, Clinical Anatomy, 23, 497-511, 2010.
[Crossref]

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic optical coherence elastography: A review”, Journal of innovative optical health sciences, 3, 4, 221-233, 2010.
[Crossref]

2009 (1)

V. M. Gelikonov, G. V. Gelikonov, and P. A. Shilyagin, “Linear-Wavenumber Spectrometer for High-Speed Spectral-Domain Optical Coherence Tomography”, Optics and Spectroscopy, 106, 459-465, 2009.
[Crossref]

2008 (1)

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties”, Optics Express, 16, 11052-11065, 2008.
[Crossref]

2004 (1)

W. Drexler, “Ultrahigh-resolution optical coherence tomography”, Journal of Biomedical Optics, 9, 47-74, 2004.
[Crossref]

1998 (1)

J. M. Schmitt, “OCT elastography: imaging microscopic deformation and stain of tissue”, Optics Express, 3, 199-211, 1998.
[Crossref]

Adie, S. G.

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography”, Optics Express, 19, 6623-6634, 2011.
[Crossref]

Boppart, S. A.

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography”, Optics Express, 19, 6623-6634, 2011.
[Crossref]

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic optical coherence elastography: A review”, Journal of innovative optical health sciences, 3, 4, 221-233, 2010.
[Crossref]

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties”, Optics Express, 16, 11052-11065, 2008.
[Crossref]

Chaney, E. J.

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties”, Optics Express, 16, 11052-11065, 2008.
[Crossref]

Crecea, V.

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic optical coherence elastography: A review”, Journal of innovative optical health sciences, 3, 4, 221-233, 2010.
[Crossref]

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties”, Optics Express, 16, 11052-11065, 2008.
[Crossref]

Doyley, M. M.

M. M. Doyley, “Model-based elastography: a survey of approaches to the inverse elasticity problem,” Phys. Med. Biol., 57 (3), R35-R73, 2012.

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue : the 20 year perspective”, Physics in Medicine and Biology, 56, R1-R29, 2011
[Crossref]

Drexler, W.

W. Drexler, “Ultrahigh-resolution optical coherence tomography”, Journal of Biomedical Optics, 9, 47-74, 2004.
[Crossref]

Ehman, R. L.

Y. K. Mariappan, K. J Glaser, and R. L. Ehman, “Magnetic resonance elastography: A review”, Clinical Anatomy, 23, 497-511, 2010.
[Crossref]

Gelikonov, G. V.

V. M. Gelikonov, G. V. Gelikonov, and P. A. Shilyagin, “Linear-Wavenumber Spectrometer for High-Speed Spectral-Domain Optical Coherence Tomography”, Optics and Spectroscopy, 106, 459-465, 2009.
[Crossref]

Gelikonov, V. M.

V. M. Gelikonov, G. V. Gelikonov, and P. A. Shilyagin, “Linear-Wavenumber Spectrometer for High-Speed Spectral-Domain Optical Coherence Tomography”, Optics and Spectroscopy, 106, 459-465, 2009.
[Crossref]

Gerstmann, D. K.

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography”, Optics Express, 19, 6623-6634, 2011.
[Crossref]

Gil, S. K.

Y. Gui, S. K. Gil, and G. H. Ryu, “Effects of extrusion condition on the physicochemical properties of extruded red ginseng”, Preventive Nutrition and Food Science, 17, 203-209, 2012.
[Crossref]

Glaser, K. J

Y. K. Mariappan, K. J Glaser, and R. L. Ehman, “Magnetic resonance elastography: A review”, Clinical Anatomy, 23, 497-511, 2010.
[Crossref]

Gui, Y.

Y. Gui, S. K. Gil, and G. H. Ryu, “Effects of extrusion condition on the physicochemical properties of extruded red ginseng”, Preventive Nutrition and Food Science, 17, 203-209, 2012.
[Crossref]

Kennedy, B. F.

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects”, IEEE Journal of Selected Topics in Quantum Electronics 20, 2, 272-288, 2014.
[Crossref]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography”, Optics Express, 19, 6623-6634, 2011.
[Crossref]

Kennedy, K. M.

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects”, IEEE Journal of Selected Topics in Quantum Electronics 20, 2, 272-288, 2014.
[Crossref]

Liang, X.

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography”, Optics Express, 19, 6623-6634, 2011.
[Crossref]

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic optical coherence elastography: A review”, Journal of innovative optical health sciences, 3, 4, 221-233, 2010.
[Crossref]

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties”, Optics Express, 16, 11052-11065, 2008.
[Crossref]

Mariappan, Y. K.

Y. K. Mariappan, K. J Glaser, and R. L. Ehman, “Magnetic resonance elastography: A review”, Clinical Anatomy, 23, 497-511, 2010.
[Crossref]

Oldenburg, A. L.

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties”, Optics Express, 16, 11052-11065, 2008.
[Crossref]

Parker, K. J.

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue : the 20 year perspective”, Physics in Medicine and Biology, 56, R1-R29, 2011
[Crossref]

Quirk, B. C.

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography”, Optics Express, 19, 6623-6634, 2011.
[Crossref]

Rubens, D. J.

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue : the 20 year perspective”, Physics in Medicine and Biology, 56, R1-R29, 2011
[Crossref]

Ryu, G. H.

Y. Gui, S. K. Gil, and G. H. Ryu, “Effects of extrusion condition on the physicochemical properties of extruded red ginseng”, Preventive Nutrition and Food Science, 17, 203-209, 2012.
[Crossref]

Sampson, D. D.

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects”, IEEE Journal of Selected Topics in Quantum Electronics 20, 2, 272-288, 2014.
[Crossref]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography”, Optics Express, 19, 6623-6634, 2011.
[Crossref]

Schmitt, J. M.

J. M. Schmitt, “OCT elastography: imaging microscopic deformation and stain of tissue”, Optics Express, 3, 199-211, 1998.
[Crossref]

Shilyagin, P. A.

V. M. Gelikonov, G. V. Gelikonov, and P. A. Shilyagin, “Linear-Wavenumber Spectrometer for High-Speed Spectral-Domain Optical Coherence Tomography”, Optics and Spectroscopy, 106, 459-465, 2009.
[Crossref]

Clinical Anatomy (1)

Y. K. Mariappan, K. J Glaser, and R. L. Ehman, “Magnetic resonance elastography: A review”, Clinical Anatomy, 23, 497-511, 2010.
[Crossref]

IEEE Journal of Selected Topics in Quantum Electronics (1)

B. F. Kennedy, K. M. Kennedy, and D. D. Sampson, “A Review of Optical Coherence Elastography: Fundamentals, Techniques and Prospects”, IEEE Journal of Selected Topics in Quantum Electronics 20, 2, 272-288, 2014.
[Crossref]

Journal of Biomedical Optics (1)

W. Drexler, “Ultrahigh-resolution optical coherence tomography”, Journal of Biomedical Optics, 9, 47-74, 2004.
[Crossref]

Journal of innovative optical health sciences (1)

X. Liang, V. Crecea, and S. A. Boppart, “Dynamic optical coherence elastography: A review”, Journal of innovative optical health sciences, 3, 4, 221-233, 2010.
[Crossref]

Optics and Spectroscopy (1)

V. M. Gelikonov, G. V. Gelikonov, and P. A. Shilyagin, “Linear-Wavenumber Spectrometer for High-Speed Spectral-Domain Optical Coherence Tomography”, Optics and Spectroscopy, 106, 459-465, 2009.
[Crossref]

Optics Express (3)

J. M. Schmitt, “OCT elastography: imaging microscopic deformation and stain of tissue”, Optics Express, 3, 199-211, 1998.
[Crossref]

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties”, Optics Express, 16, 11052-11065, 2008.
[Crossref]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B. C. Quirk, S. A. Boppart, and D. D. Sampson, “In vivo three-dimensional optical coherence elastography”, Optics Express, 19, 6623-6634, 2011.
[Crossref]

Phys. Med. Biol. (1)

M. M. Doyley, “Model-based elastography: a survey of approaches to the inverse elasticity problem,” Phys. Med. Biol., 57 (3), R35-R73, 2012.

Physics in Medicine and Biology (1)

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue : the 20 year perspective”, Physics in Medicine and Biology, 56, R1-R29, 2011
[Crossref]

Preventive Nutrition and Food Science (1)

Y. Gui, S. K. Gil, and G. H. Ryu, “Effects of extrusion condition on the physicochemical properties of extruded red ginseng”, Preventive Nutrition and Food Science, 17, 203-209, 2012.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.