Abstract

Degradation of bit-error-rate (BER), caused by atmospheric turbulence, seriously hinders the performance of coherent Free Space Optical (FSO) communication systems. An adaptive optics system proves to be effective in suppressing the atmospheric turbulence. The holographic modal wavefront sensor (HMWFS) proposed in our previous work, noted for its fast detecting rates and insensitivity to beam scintillation, is applied to the coherent FSO communication systems. In this paper, based on our previous work, we first introduce the principle of the HMWFS in brief and give the BER of the coherent FSO with homodyne detection in theory, and then analyze the improvement of BER for a coherent FSO system based on our previous simulation works. The results show that the wavefront sensor we propose is better for weak atmospheric turbulence. The most obvious advantages of HMWFS are fast detecting rates and insensitivity to beam scintillation.

© 2017 Optical Society of Korea

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Wei, Y. Kainan, H. Danian, L. Xudong, W. Liang, and L. Yaowen, “Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the Greenwood frequency,” Opt. Express 24, 13288-13302 (2016).
    [Crossref]
  2. J. Ma, K. Li, L. Tan, S. Yu, and Y. Cao, “Performance analysis of satellite-to-ground downlink coherent optical communications with spatial diversity over Gamma-Gamma atmospheric turbulence,” Appl. Opt. 54, 7575-7585 (2015).
    [Crossref]
  3. D. Geng, P. Du, W. Wang, G. Gao, T. Wang, and M. Gong, “Single laser free-space duplex communication system with adaptive threshold technique and BER analysis in weak turbulent atmosphere,” Opt. Letters 39, 3950-3953 (2014).
    [Crossref]
  4. R. M. Rennie, D. Goorskey, M. R. Whiteley, and E. J. Jumper, “Wavefront measurements of a laser-induced break-down spark in still air,” Appl. Opt. 51, 2306-2314 (2012).
    [Crossref]
  5. W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication system,” Optik 12, 324-328 (2014).
  6. S. Dongyiel, H. Y. Such, and C. J. Woo, “4×10 Gb/s terrestrial optical free space transmission over 1.2 km using an EDFA preamplifier with 100 GHz channel spacing,” Opt Express, 7, 280-284 (2000).
    [Crossref]
  7. Q. Yang, J. Zhao, M. Wang, and J. Jia, “Wavefront sensor-less adaptive opitcs based on the trust region method,” Opt. Letters 40, 1235-1237 (2015).
    [Crossref]
  8. J. Cao, X. Zhao, Z. Li, W. Liu, and Y. Song, “Stochastic parallel gradient descent laser beam control algorithm for atmospheric compensation in free space optical communication,” Optik 125, 6142-6147 (2014).
    [Crossref]
  9. H. Linhai and C. Rao, “Wavefront sensor-less adaptive optics: a general model-based approach,” Opt. Express 19, 371-379 (2011).
    [Crossref]
  10. J. Ma, F. Zhao, L. Tan, S. Yu, and Y. Yang, “Degradation of single-mode fiber coupling efficiency due to localized wavefront abrerrations in free-space laser communications,” Opt. Eng. 49, 1-6 (2010).
  11. A. Belmonte, A. Rodríguez, F. Dios, and A. Comeón, “Phase compensation considerations on coherent, free-space laser communications system,” Proc. SPIE, 6736, A-11 (2007).
  12. A. Belmonte, “Influence of atmospheric phase compensation on optical heterodyne power measurements,” Opt. Express 16, 6756-6767 (2008).
    [Crossref]
  13. L. Zuo, Y. Ren, A. Dang, and G. Hong, “Performance of coherent BPSK systems using phase compensation and diversity techniques,” in Proceedings of IEEE Conference on Global Telecommunications , 1-5 (2010).
  14. L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communications through non-Kolmogorov turbulence,” Opt. Commun. 28, 1491-1495 (2011).
  15. M. Li and M. Cvijetic, “Coherent free space optics communications over the maritime atmosphere with use of adaptive optics for beam wavefront correction,” Appl. Opt. 54, 1453-1462 (2015).
    [Crossref]
  16. C. Liu, S. Chen, X. Li, and H. Xian, “Performance evaluation of adaptive optics for atmospheric coherent laser communications,” Opt. Express, 22, 15554-15563 (2014).
    [Crossref]
  17. C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21-24 (2016).
    [Crossref]
  18. H. Jian, D. Ke, L. Chao, Z. Peng, J. Dagang, and Y. Zhoushi, “Effectiveness of adaptive optics system in satellite-to-ground coherent optical communication,” Opt. Express, 22, 16000-16007 (2014).
    [Crossref]
  19. J. Huang, H. Mei, K. Deng, L. Kang, W. Zhu, and Z. Yao, “Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation,” Opt. Commun. 356, 574-577 (2015).
    [Crossref]
  20. W. Liu, W. Shi, B. Wang, K. Yao, Y. Lv, and J. Wang, “Free space optical communication performance analysis with focal plane based wavefront measurement,” Opt. Commun. 309, 212-220 (2013).
    [Crossref]
  21. F. Ghebremichael, G. P. Andersen, and Kenneth S. Gurley, “Holography-based wave-front sensing,” Appl. Opt. 47, A62-A69 (2008).
  22. G. P. Andersen, L. Dussan, F. Ghebremichael, and K. Chen, “Holographic wave-front sensor,” Opt. Eng. 48, 085801 (2009).
  23. G. P. Andersen, F. Ghebremichael, and K. S. Gurley, “Fast Computing-Free Wave-front Sensing,” Adaptive Optics: Methods, Analysis and Applications 18, AWC4 (2007).
  24. S. K. Mishra, R. Bhatt, D. Mohan, A. K. Gupta, and A. Sharma, “Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal,” Appl. Opt. 48, 6458-6465 (2009).
    [Crossref]
  25. R. Bhatt, S. K. Mishra, D. Mohan, and A. K. Gupta, “Direct amplitude detection of Zernike modes by computer-generated holographic wavefront sensor: Modeling and simulation” Optics and Lasers in Engineering, 46, 428-439 (2008).
    [Crossref]
  26. L. Changhai and J. Zongfu, “Holographic Modal Wave-front Sensor: Theoretical Analysis and Simulation,” Chinese Journal of Lasers 36, 147-152 (2009).
  27. L. Changhai, X. Fengjie, M. Haotong, H. Shengyang, and J. Zongfu, “Modal wave-front sensor based on binary phase-only multiplexed computer-generated hologram,” Appl. Opt. 49, 5117-5124 (2010) .
    [Crossref]
  28. L. Changhai, X. Fengjie, H. Shengyang, and J. Zongfu, “Performance analysis of multiplexed phase computer-generated hologram for modal wave-front sensing,” Appl. Opt. 50, 1631-1639 (2011).
  29. W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wavefront sensor,” Opt. Laser Technol. 60, 116-123 (2014).
    [Crossref]

2016 (2)

2015 (4)

M. Li and M. Cvijetic, “Coherent free space optics communications over the maritime atmosphere with use of adaptive optics for beam wavefront correction,” Appl. Opt. 54, 1453-1462 (2015).
[Crossref]

J. Ma, K. Li, L. Tan, S. Yu, and Y. Cao, “Performance analysis of satellite-to-ground downlink coherent optical communications with spatial diversity over Gamma-Gamma atmospheric turbulence,” Appl. Opt. 54, 7575-7585 (2015).
[Crossref]

Q. Yang, J. Zhao, M. Wang, and J. Jia, “Wavefront sensor-less adaptive opitcs based on the trust region method,” Opt. Letters 40, 1235-1237 (2015).
[Crossref]

J. Huang, H. Mei, K. Deng, L. Kang, W. Zhu, and Z. Yao, “Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation,” Opt. Commun. 356, 574-577 (2015).
[Crossref]

2014 (6)

W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wavefront sensor,” Opt. Laser Technol. 60, 116-123 (2014).
[Crossref]

J. Cao, X. Zhao, Z. Li, W. Liu, and Y. Song, “Stochastic parallel gradient descent laser beam control algorithm for atmospheric compensation in free space optical communication,” Optik 125, 6142-6147 (2014).
[Crossref]

D. Geng, P. Du, W. Wang, G. Gao, T. Wang, and M. Gong, “Single laser free-space duplex communication system with adaptive threshold technique and BER analysis in weak turbulent atmosphere,” Opt. Letters 39, 3950-3953 (2014).
[Crossref]

C. Liu, S. Chen, X. Li, and H. Xian, “Performance evaluation of adaptive optics for atmospheric coherent laser communications,” Opt. Express, 22, 15554-15563 (2014).
[Crossref]

H. Jian, D. Ke, L. Chao, Z. Peng, J. Dagang, and Y. Zhoushi, “Effectiveness of adaptive optics system in satellite-to-ground coherent optical communication,” Opt. Express, 22, 16000-16007 (2014).
[Crossref]

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication system,” Optik 12, 324-328 (2014).

2013 (1)

W. Liu, W. Shi, B. Wang, K. Yao, Y. Lv, and J. Wang, “Free space optical communication performance analysis with focal plane based wavefront measurement,” Opt. Commun. 309, 212-220 (2013).
[Crossref]

2012 (1)

2011 (3)

2010 (2)

L. Changhai, X. Fengjie, M. Haotong, H. Shengyang, and J. Zongfu, “Modal wave-front sensor based on binary phase-only multiplexed computer-generated hologram,” Appl. Opt. 49, 5117-5124 (2010) .
[Crossref]

J. Ma, F. Zhao, L. Tan, S. Yu, and Y. Yang, “Degradation of single-mode fiber coupling efficiency due to localized wavefront abrerrations in free-space laser communications,” Opt. Eng. 49, 1-6 (2010).

2009 (3)

L. Changhai and J. Zongfu, “Holographic Modal Wave-front Sensor: Theoretical Analysis and Simulation,” Chinese Journal of Lasers 36, 147-152 (2009).

S. K. Mishra, R. Bhatt, D. Mohan, A. K. Gupta, and A. Sharma, “Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal,” Appl. Opt. 48, 6458-6465 (2009).
[Crossref]

G. P. Andersen, L. Dussan, F. Ghebremichael, and K. Chen, “Holographic wave-front sensor,” Opt. Eng. 48, 085801 (2009).

2008 (3)

F. Ghebremichael, G. P. Andersen, and Kenneth S. Gurley, “Holography-based wave-front sensing,” Appl. Opt. 47, A62-A69 (2008).

R. Bhatt, S. K. Mishra, D. Mohan, and A. K. Gupta, “Direct amplitude detection of Zernike modes by computer-generated holographic wavefront sensor: Modeling and simulation” Optics and Lasers in Engineering, 46, 428-439 (2008).
[Crossref]

A. Belmonte, “Influence of atmospheric phase compensation on optical heterodyne power measurements,” Opt. Express 16, 6756-6767 (2008).
[Crossref]

2007 (2)

A. Belmonte, A. Rodríguez, F. Dios, and A. Comeón, “Phase compensation considerations on coherent, free-space laser communications system,” Proc. SPIE, 6736, A-11 (2007).

G. P. Andersen, F. Ghebremichael, and K. S. Gurley, “Fast Computing-Free Wave-front Sensing,” Adaptive Optics: Methods, Analysis and Applications 18, AWC4 (2007).

2000 (1)

S. Dongyiel, H. Y. Such, and C. J. Woo, “4×10 Gb/s terrestrial optical free space transmission over 1.2 km using an EDFA preamplifier with 100 GHz channel spacing,” Opt Express, 7, 280-284 (2000).
[Crossref]

Andersen, G. P.

G. P. Andersen, L. Dussan, F. Ghebremichael, and K. Chen, “Holographic wave-front sensor,” Opt. Eng. 48, 085801 (2009).

F. Ghebremichael, G. P. Andersen, and Kenneth S. Gurley, “Holography-based wave-front sensing,” Appl. Opt. 47, A62-A69 (2008).

G. P. Andersen, F. Ghebremichael, and K. S. Gurley, “Fast Computing-Free Wave-front Sensing,” Adaptive Optics: Methods, Analysis and Applications 18, AWC4 (2007).

Belmonte, A.

A. Belmonte, “Influence of atmospheric phase compensation on optical heterodyne power measurements,” Opt. Express 16, 6756-6767 (2008).
[Crossref]

A. Belmonte, A. Rodríguez, F. Dios, and A. Comeón, “Phase compensation considerations on coherent, free-space laser communications system,” Proc. SPIE, 6736, A-11 (2007).

Bhatt, R.

S. K. Mishra, R. Bhatt, D. Mohan, A. K. Gupta, and A. Sharma, “Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal,” Appl. Opt. 48, 6458-6465 (2009).
[Crossref]

R. Bhatt, S. K. Mishra, D. Mohan, and A. K. Gupta, “Direct amplitude detection of Zernike modes by computer-generated holographic wavefront sensor: Modeling and simulation” Optics and Lasers in Engineering, 46, 428-439 (2008).
[Crossref]

Cao, J.

W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wavefront sensor,” Opt. Laser Technol. 60, 116-123 (2014).
[Crossref]

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication system,” Optik 12, 324-328 (2014).

J. Cao, X. Zhao, Z. Li, W. Liu, and Y. Song, “Stochastic parallel gradient descent laser beam control algorithm for atmospheric compensation in free space optical communication,” Optik 125, 6142-6147 (2014).
[Crossref]

Cao, Y.

Changhai, L.

Chao, L.

Chen, K.

G. P. Andersen, L. Dussan, F. Ghebremichael, and K. Chen, “Holographic wave-front sensor,” Opt. Eng. 48, 085801 (2009).

Chen, M.

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21-24 (2016).
[Crossref]

Chen, S.

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21-24 (2016).
[Crossref]

C. Liu, S. Chen, X. Li, and H. Xian, “Performance evaluation of adaptive optics for atmospheric coherent laser communications,” Opt. Express, 22, 15554-15563 (2014).
[Crossref]

Chi, X.

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication system,” Optik 12, 324-328 (2014).

W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wavefront sensor,” Opt. Laser Technol. 60, 116-123 (2014).
[Crossref]

Comeón, A.

A. Belmonte, A. Rodríguez, F. Dios, and A. Comeón, “Phase compensation considerations on coherent, free-space laser communications system,” Proc. SPIE, 6736, A-11 (2007).

Cvijetic, M.

Dagang, J.

Dang, A.

L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communications through non-Kolmogorov turbulence,” Opt. Commun. 28, 1491-1495 (2011).

L. Zuo, Y. Ren, A. Dang, and G. Hong, “Performance of coherent BPSK systems using phase compensation and diversity techniques,” in Proceedings of IEEE Conference on Global Telecommunications , 1-5 (2010).

Danian, H.

Deng, K.

J. Huang, H. Mei, K. Deng, L. Kang, W. Zhu, and Z. Yao, “Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation,” Opt. Commun. 356, 574-577 (2015).
[Crossref]

Dios, F.

A. Belmonte, A. Rodríguez, F. Dios, and A. Comeón, “Phase compensation considerations on coherent, free-space laser communications system,” Proc. SPIE, 6736, A-11 (2007).

Dongyiel, S.

S. Dongyiel, H. Y. Such, and C. J. Woo, “4×10 Gb/s terrestrial optical free space transmission over 1.2 km using an EDFA preamplifier with 100 GHz channel spacing,” Opt Express, 7, 280-284 (2000).
[Crossref]

Du, P.

D. Geng, P. Du, W. Wang, G. Gao, T. Wang, and M. Gong, “Single laser free-space duplex communication system with adaptive threshold technique and BER analysis in weak turbulent atmosphere,” Opt. Letters 39, 3950-3953 (2014).
[Crossref]

Dussan, L.

G. P. Andersen, L. Dussan, F. Ghebremichael, and K. Chen, “Holographic wave-front sensor,” Opt. Eng. 48, 085801 (2009).

Fengjie, X.

Gao, G.

D. Geng, P. Du, W. Wang, G. Gao, T. Wang, and M. Gong, “Single laser free-space duplex communication system with adaptive threshold technique and BER analysis in weak turbulent atmosphere,” Opt. Letters 39, 3950-3953 (2014).
[Crossref]

Geng, D.

D. Geng, P. Du, W. Wang, G. Gao, T. Wang, and M. Gong, “Single laser free-space duplex communication system with adaptive threshold technique and BER analysis in weak turbulent atmosphere,” Opt. Letters 39, 3950-3953 (2014).
[Crossref]

Ghebremichael, F.

G. P. Andersen, L. Dussan, F. Ghebremichael, and K. Chen, “Holographic wave-front sensor,” Opt. Eng. 48, 085801 (2009).

F. Ghebremichael, G. P. Andersen, and Kenneth S. Gurley, “Holography-based wave-front sensing,” Appl. Opt. 47, A62-A69 (2008).

G. P. Andersen, F. Ghebremichael, and K. S. Gurley, “Fast Computing-Free Wave-front Sensing,” Adaptive Optics: Methods, Analysis and Applications 18, AWC4 (2007).

Gong, M.

D. Geng, P. Du, W. Wang, G. Gao, T. Wang, and M. Gong, “Single laser free-space duplex communication system with adaptive threshold technique and BER analysis in weak turbulent atmosphere,” Opt. Letters 39, 3950-3953 (2014).
[Crossref]

Goorskey, D.

Guo, H.

L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communications through non-Kolmogorov turbulence,” Opt. Commun. 28, 1491-1495 (2011).

Gupta, A. K.

S. K. Mishra, R. Bhatt, D. Mohan, A. K. Gupta, and A. Sharma, “Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal,” Appl. Opt. 48, 6458-6465 (2009).
[Crossref]

R. Bhatt, S. K. Mishra, D. Mohan, and A. K. Gupta, “Direct amplitude detection of Zernike modes by computer-generated holographic wavefront sensor: Modeling and simulation” Optics and Lasers in Engineering, 46, 428-439 (2008).
[Crossref]

Gurley, K. S.

G. P. Andersen, F. Ghebremichael, and K. S. Gurley, “Fast Computing-Free Wave-front Sensing,” Adaptive Optics: Methods, Analysis and Applications 18, AWC4 (2007).

Gurley, Kenneth S.

Haotong, M.

Hong, G.

L. Zuo, Y. Ren, A. Dang, and G. Hong, “Performance of coherent BPSK systems using phase compensation and diversity techniques,” in Proceedings of IEEE Conference on Global Telecommunications , 1-5 (2010).

Huang, J.

J. Huang, H. Mei, K. Deng, L. Kang, W. Zhu, and Z. Yao, “Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation,” Opt. Commun. 356, 574-577 (2015).
[Crossref]

Jia, J.

Q. Yang, J. Zhao, M. Wang, and J. Jia, “Wavefront sensor-less adaptive opitcs based on the trust region method,” Opt. Letters 40, 1235-1237 (2015).
[Crossref]

Jian, H.

Jumper, E. J.

Kainan, Y.

Kang, L.

J. Huang, H. Mei, K. Deng, L. Kang, W. Zhu, and Z. Yao, “Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation,” Opt. Commun. 356, 574-577 (2015).
[Crossref]

Ke, D.

Li, K.

Li, M.

Li, X.

Li, Z.

J. Cao, X. Zhao, Z. Li, W. Liu, and Y. Song, “Stochastic parallel gradient descent laser beam control algorithm for atmospheric compensation in free space optical communication,” Optik 125, 6142-6147 (2014).
[Crossref]

Liang, W.

Linhai, H.

Liu, C.

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21-24 (2016).
[Crossref]

C. Liu, S. Chen, X. Li, and H. Xian, “Performance evaluation of adaptive optics for atmospheric coherent laser communications,” Opt. Express, 22, 15554-15563 (2014).
[Crossref]

Liu, W.

J. Cao, X. Zhao, Z. Li, W. Liu, and Y. Song, “Stochastic parallel gradient descent laser beam control algorithm for atmospheric compensation in free space optical communication,” Optik 125, 6142-6147 (2014).
[Crossref]

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication system,” Optik 12, 324-328 (2014).

W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wavefront sensor,” Opt. Laser Technol. 60, 116-123 (2014).
[Crossref]

W. Liu, W. Shi, B. Wang, K. Yao, Y. Lv, and J. Wang, “Free space optical communication performance analysis with focal plane based wavefront measurement,” Opt. Commun. 309, 212-220 (2013).
[Crossref]

Lv, Y.

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication system,” Optik 12, 324-328 (2014).

W. Liu, W. Shi, B. Wang, K. Yao, Y. Lv, and J. Wang, “Free space optical communication performance analysis with focal plane based wavefront measurement,” Opt. Commun. 309, 212-220 (2013).
[Crossref]

Ma, J.

J. Ma, K. Li, L. Tan, S. Yu, and Y. Cao, “Performance analysis of satellite-to-ground downlink coherent optical communications with spatial diversity over Gamma-Gamma atmospheric turbulence,” Appl. Opt. 54, 7575-7585 (2015).
[Crossref]

J. Ma, F. Zhao, L. Tan, S. Yu, and Y. Yang, “Degradation of single-mode fiber coupling efficiency due to localized wavefront abrerrations in free-space laser communications,” Opt. Eng. 49, 1-6 (2010).

Mei, H.

J. Huang, H. Mei, K. Deng, L. Kang, W. Zhu, and Z. Yao, “Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation,” Opt. Commun. 356, 574-577 (2015).
[Crossref]

Mishra, S. K.

S. K. Mishra, R. Bhatt, D. Mohan, A. K. Gupta, and A. Sharma, “Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal,” Appl. Opt. 48, 6458-6465 (2009).
[Crossref]

R. Bhatt, S. K. Mishra, D. Mohan, and A. K. Gupta, “Direct amplitude detection of Zernike modes by computer-generated holographic wavefront sensor: Modeling and simulation” Optics and Lasers in Engineering, 46, 428-439 (2008).
[Crossref]

Mohan, D.

S. K. Mishra, R. Bhatt, D. Mohan, A. K. Gupta, and A. Sharma, “Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal,” Appl. Opt. 48, 6458-6465 (2009).
[Crossref]

R. Bhatt, S. K. Mishra, D. Mohan, and A. K. Gupta, “Direct amplitude detection of Zernike modes by computer-generated holographic wavefront sensor: Modeling and simulation” Optics and Lasers in Engineering, 46, 428-439 (2008).
[Crossref]

Peng, Z.

Rao, C.

Ren, Y.

L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communications through non-Kolmogorov turbulence,” Opt. Commun. 28, 1491-1495 (2011).

L. Zuo, Y. Ren, A. Dang, and G. Hong, “Performance of coherent BPSK systems using phase compensation and diversity techniques,” in Proceedings of IEEE Conference on Global Telecommunications , 1-5 (2010).

Rennie, R. M.

Rodríguez, A.

A. Belmonte, A. Rodríguez, F. Dios, and A. Comeón, “Phase compensation considerations on coherent, free-space laser communications system,” Proc. SPIE, 6736, A-11 (2007).

Sharma, A.

Shengyang, H.

Shi, W.

W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wavefront sensor,” Opt. Laser Technol. 60, 116-123 (2014).
[Crossref]

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication system,” Optik 12, 324-328 (2014).

W. Liu, W. Shi, B. Wang, K. Yao, Y. Lv, and J. Wang, “Free space optical communication performance analysis with focal plane based wavefront measurement,” Opt. Commun. 309, 212-220 (2013).
[Crossref]

Song, Y.

J. Cao, X. Zhao, Z. Li, W. Liu, and Y. Song, “Stochastic parallel gradient descent laser beam control algorithm for atmospheric compensation in free space optical communication,” Optik 125, 6142-6147 (2014).
[Crossref]

Such, H. Y.

S. Dongyiel, H. Y. Such, and C. J. Woo, “4×10 Gb/s terrestrial optical free space transmission over 1.2 km using an EDFA preamplifier with 100 GHz channel spacing,” Opt Express, 7, 280-284 (2000).
[Crossref]

Tan, L.

J. Ma, K. Li, L. Tan, S. Yu, and Y. Cao, “Performance analysis of satellite-to-ground downlink coherent optical communications with spatial diversity over Gamma-Gamma atmospheric turbulence,” Appl. Opt. 54, 7575-7585 (2015).
[Crossref]

J. Ma, F. Zhao, L. Tan, S. Yu, and Y. Yang, “Degradation of single-mode fiber coupling efficiency due to localized wavefront abrerrations in free-space laser communications,” Opt. Eng. 49, 1-6 (2010).

Wang, B.

W. Liu, W. Shi, B. Wang, K. Yao, Y. Lv, and J. Wang, “Free space optical communication performance analysis with focal plane based wavefront measurement,” Opt. Commun. 309, 212-220 (2013).
[Crossref]

Wang, J.

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication system,” Optik 12, 324-328 (2014).

W. Liu, W. Shi, B. Wang, K. Yao, Y. Lv, and J. Wang, “Free space optical communication performance analysis with focal plane based wavefront measurement,” Opt. Commun. 309, 212-220 (2013).
[Crossref]

Wang, M.

Q. Yang, J. Zhao, M. Wang, and J. Jia, “Wavefront sensor-less adaptive opitcs based on the trust region method,” Opt. Letters 40, 1235-1237 (2015).
[Crossref]

Wang, S.

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication system,” Optik 12, 324-328 (2014).

Wang, T.

D. Geng, P. Du, W. Wang, G. Gao, T. Wang, and M. Gong, “Single laser free-space duplex communication system with adaptive threshold technique and BER analysis in weak turbulent atmosphere,” Opt. Letters 39, 3950-3953 (2014).
[Crossref]

Wang, W.

D. Geng, P. Du, W. Wang, G. Gao, T. Wang, and M. Gong, “Single laser free-space duplex communication system with adaptive threshold technique and BER analysis in weak turbulent atmosphere,” Opt. Letters 39, 3950-3953 (2014).
[Crossref]

Wei, L.

Whiteley, M. R.

Woo, C. J.

S. Dongyiel, H. Y. Such, and C. J. Woo, “4×10 Gb/s terrestrial optical free space transmission over 1.2 km using an EDFA preamplifier with 100 GHz channel spacing,” Opt Express, 7, 280-284 (2000).
[Crossref]

Wu, P.

W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wavefront sensor,” Opt. Laser Technol. 60, 116-123 (2014).
[Crossref]

Xian, H.

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21-24 (2016).
[Crossref]

C. Liu, S. Chen, X. Li, and H. Xian, “Performance evaluation of adaptive optics for atmospheric coherent laser communications,” Opt. Express, 22, 15554-15563 (2014).
[Crossref]

Xudong, L.

Yang, Q.

Q. Yang, J. Zhao, M. Wang, and J. Jia, “Wavefront sensor-less adaptive opitcs based on the trust region method,” Opt. Letters 40, 1235-1237 (2015).
[Crossref]

Yang, Y.

J. Ma, F. Zhao, L. Tan, S. Yu, and Y. Yang, “Degradation of single-mode fiber coupling efficiency due to localized wavefront abrerrations in free-space laser communications,” Opt. Eng. 49, 1-6 (2010).

Yao, K.

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication system,” Optik 12, 324-328 (2014).

W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wavefront sensor,” Opt. Laser Technol. 60, 116-123 (2014).
[Crossref]

W. Liu, W. Shi, B. Wang, K. Yao, Y. Lv, and J. Wang, “Free space optical communication performance analysis with focal plane based wavefront measurement,” Opt. Commun. 309, 212-220 (2013).
[Crossref]

Yao, Z.

J. Huang, H. Mei, K. Deng, L. Kang, W. Zhu, and Z. Yao, “Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation,” Opt. Commun. 356, 574-577 (2015).
[Crossref]

Yaowen, L.

Yu, S.

J. Ma, K. Li, L. Tan, S. Yu, and Y. Cao, “Performance analysis of satellite-to-ground downlink coherent optical communications with spatial diversity over Gamma-Gamma atmospheric turbulence,” Appl. Opt. 54, 7575-7585 (2015).
[Crossref]

J. Ma, F. Zhao, L. Tan, S. Yu, and Y. Yang, “Degradation of single-mode fiber coupling efficiency due to localized wavefront abrerrations in free-space laser communications,” Opt. Eng. 49, 1-6 (2010).

Zhao, F.

J. Ma, F. Zhao, L. Tan, S. Yu, and Y. Yang, “Degradation of single-mode fiber coupling efficiency due to localized wavefront abrerrations in free-space laser communications,” Opt. Eng. 49, 1-6 (2010).

Zhao, J.

Q. Yang, J. Zhao, M. Wang, and J. Jia, “Wavefront sensor-less adaptive opitcs based on the trust region method,” Opt. Letters 40, 1235-1237 (2015).
[Crossref]

Zhao, X.

J. Cao, X. Zhao, Z. Li, W. Liu, and Y. Song, “Stochastic parallel gradient descent laser beam control algorithm for atmospheric compensation in free space optical communication,” Optik 125, 6142-6147 (2014).
[Crossref]

Zhoushi, Y.

Zhu, W.

J. Huang, H. Mei, K. Deng, L. Kang, W. Zhu, and Z. Yao, “Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation,” Opt. Commun. 356, 574-577 (2015).
[Crossref]

Zongfu, J.

Zuo, L.

L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communications through non-Kolmogorov turbulence,” Opt. Commun. 28, 1491-1495 (2011).

L. Zuo, Y. Ren, A. Dang, and G. Hong, “Performance of coherent BPSK systems using phase compensation and diversity techniques,” in Proceedings of IEEE Conference on Global Telecommunications , 1-5 (2010).

Adaptive Optics: Methods, Analysis and Applications (1)

G. P. Andersen, F. Ghebremichael, and K. S. Gurley, “Fast Computing-Free Wave-front Sensing,” Adaptive Optics: Methods, Analysis and Applications 18, AWC4 (2007).

Appl. Opt. (7)

Chinese Journal of Lasers (1)

L. Changhai and J. Zongfu, “Holographic Modal Wave-front Sensor: Theoretical Analysis and Simulation,” Chinese Journal of Lasers 36, 147-152 (2009).

Opt Express (1)

S. Dongyiel, H. Y. Such, and C. J. Woo, “4×10 Gb/s terrestrial optical free space transmission over 1.2 km using an EDFA preamplifier with 100 GHz channel spacing,” Opt Express, 7, 280-284 (2000).
[Crossref]

Opt. Commun. (4)

C. Liu, M. Chen, S. Chen, and H. Xian, “Adaptive optics for the free-space coherent optical communications,” Opt. Commun. 361, 21-24 (2016).
[Crossref]

L. Zuo, A. Dang, Y. Ren, and H. Guo, “Performance of phase compensated coherent free space optical communications through non-Kolmogorov turbulence,” Opt. Commun. 28, 1491-1495 (2011).

J. Huang, H. Mei, K. Deng, L. Kang, W. Zhu, and Z. Yao, “Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation,” Opt. Commun. 356, 574-577 (2015).
[Crossref]

W. Liu, W. Shi, B. Wang, K. Yao, Y. Lv, and J. Wang, “Free space optical communication performance analysis with focal plane based wavefront measurement,” Opt. Commun. 309, 212-220 (2013).
[Crossref]

Opt. Eng. (2)

G. P. Andersen, L. Dussan, F. Ghebremichael, and K. Chen, “Holographic wave-front sensor,” Opt. Eng. 48, 085801 (2009).

J. Ma, F. Zhao, L. Tan, S. Yu, and Y. Yang, “Degradation of single-mode fiber coupling efficiency due to localized wavefront abrerrations in free-space laser communications,” Opt. Eng. 49, 1-6 (2010).

Opt. Express (5)

Opt. Laser Technol. (1)

W. Liu, W. Shi, K. Yao, J. Cao, P. Wu, and X. Chi, “Fiber Coupling efficiency analysis of free space optical communication systems with holographic modal wavefront sensor,” Opt. Laser Technol. 60, 116-123 (2014).
[Crossref]

Opt. Letters (2)

Q. Yang, J. Zhao, M. Wang, and J. Jia, “Wavefront sensor-less adaptive opitcs based on the trust region method,” Opt. Letters 40, 1235-1237 (2015).
[Crossref]

D. Geng, P. Du, W. Wang, G. Gao, T. Wang, and M. Gong, “Single laser free-space duplex communication system with adaptive threshold technique and BER analysis in weak turbulent atmosphere,” Opt. Letters 39, 3950-3953 (2014).
[Crossref]

Optics and Lasers in Engineering (1)

R. Bhatt, S. K. Mishra, D. Mohan, and A. K. Gupta, “Direct amplitude detection of Zernike modes by computer-generated holographic wavefront sensor: Modeling and simulation” Optics and Lasers in Engineering, 46, 428-439 (2008).
[Crossref]

Optik (2)

W. Liu, W. Shi, J. Cao, Y. Lv, K. Yao, S. Wang, J. Wang, and X. Chi, “Bit error rate analysis with real-time pointing errors correction in free space optical communication system,” Optik 12, 324-328 (2014).

J. Cao, X. Zhao, Z. Li, W. Liu, and Y. Song, “Stochastic parallel gradient descent laser beam control algorithm for atmospheric compensation in free space optical communication,” Optik 125, 6142-6147 (2014).
[Crossref]

Proc. SPIE (1)

A. Belmonte, A. Rodríguez, F. Dios, and A. Comeón, “Phase compensation considerations on coherent, free-space laser communications system,” Proc. SPIE, 6736, A-11 (2007).

Other (1)

L. Zuo, Y. Ren, A. Dang, and G. Hong, “Performance of coherent BPSK systems using phase compensation and diversity techniques,” in Proceedings of IEEE Conference on Global Telecommunications , 1-5 (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.