Abstract

We demonstrate the rotating properties of Bragg reflections and spatial lattice solitons in rotating photonic lattices by analyzing the linear and nonlinear propagations of light. It reveals that the Bragg reflection of the light waves rotates synchronously with the lattices, leading to the rotation of the Bloch waves during propagations. In the presence of nonlinearity, rotating lattice solitons from different transmission bands can propagate in a relatively stable manner. However, reduced-symmetry solitons at point X2 cannot easily rotate synchronously with the lattice, owing to Coriolis forces. Moreover, additional angular momenta are added to the off-axis propagating solitons.

© 2011 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription