Abstract

Exo-atmospheric targets are especially difficult to distinguish using currently available techniques, because all target parts follow the same spatial trajectory. The feasibility of distinguishing multiple type components of exo-atmospheric targets is demonstrated by applying the probabilistic neural network. Differences in thermal behavior and time-varying signals of space-objects are analyzed during the selection of features used as inputs of the neural network. A novel multi-colorimetric technology is introduced to measure precisely the temporal evolutional characteristics of temperature and emissivity-area products. To test the effectiveness of the recognition algorithm, the results obtained from a set of synthetic multispectral data set are presented and discussed. These results indicate that the discrimination algorithm can obtain a remarkable success rate.

© 2011 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription