Abstract

Distance resolutions and noises are analyzed experimentally for long-range three-dimensional (3D) active imaging systems that have signal-to-noise ratios (SNRs) more optimal than 30:1. Findings indicate that the photon shot noise primarily determines the SNR. However, the active imaging method, which has a relatively low SNR, generates a relatively high distance resolution. To explain this phenomenon, a theory in which the distance resolution of 3D active imaging systems is determined by both the photon shot noise and the subinterval width is developed. Theoretical and experimental results differ by less than 4%.

© 2011 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription