Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 9,
  • Issue 6,
  • pp. 060102-
  • (2011)

Direct inversion of shallow-water bathymetry from EO-1 hyperspectral remote sensing data

Not Accessible

Your library or personal account may give you access

Abstract

Using the US National Aeronautics and space Administration (NASA) Earth Observing-1 Mission (EO-1) hyperion hyperspectral remote sensing data, we study the shallow-water bathymetry inversion in Smith Island Bay. The fast line-of-sight atmospheric analysis of spectral hypercubes module is applied for atmo-spheric correction, and principal component analysis method combined with scatter diagram and maximum likelihood classification is used for seabed classification. The diffuse attenuation coefficient Kd is derived using quasi-analytical algorithm (QAA), which performs well in optically deep water. Kd obtained from QAA requires correction, particularly those derived in some coastal areas with optically shallow water and calculated by direct inversion based on radiative transfer theory to obtain the bathymetry. The direct inversion method derives the water depth quickly, and matches the results from optimized algorithm.

© 2011 Chinese Optics Letters

PDF Article
More Like This
Hyperspectral remote sensing for shallow waters. I. A semianalytical model

Zhongping Lee, Kendall L. Carder, Curtis D. Mobley, Robert G. Steward, and Jennifer S. Patch
Appl. Opt. 37(27) 6329-6338 (1998)

Satellite-derived bathymetry using Landsat-8 and Sentinel-2A images: assessment of atmospheric correction algorithms and depth derivation models in shallow waters

Zhixin Duan, Sensen Chu, Liang Cheng, Chen Ji, Manchun Li, and Wei Shen
Opt. Express 30(3) 3238-3261 (2022)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.