Abstract

A novel indirect building localization technique based on a prominent solid landmark from a forward-looking infrared imagery is proposed to localize low, deeply buried, or carefully camouflaged buildings in dense urban areas. First, the widely used effective methods are applied to detect and localize the solid landmark. The building target is then precisely indirectly localized by perspective transformation according to the imaging parameters and the space constraint relations between the building target and the solid landmark. Experimental results demonstrate this technique can indirectly localize buildings in dense urban areas effectively.

© 2011 Chinese Optics Letters

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Lafarge, X. Descombes, J. Zerubia, and M. Pierrot-Deseilligny, ISPRS J. Photogram Rem. Sens. 63, 365 (2008).
  2. M. Ortner, X. Descombes, and J. Zerubia, Int. J. Comput. Vis. 72, 107 (2007).
  3. Z. Kim and R. Nevatia, Comput. Vis. Image Understand. 96, 60 (2004).
  4. P. Saeedi and H. Zwick, in Proceedings of 10th Intl. Conf. of Control, Automation, Robotics and Vision 623 (2008).
  5. M. Fradkin, H. Ma??tre, and M. Roux, Comput. Vis. Image Understand. 82, 181 (2001).
  6. S. Noronha and R. Nevatia, IEEE Trans. Pattern. Anal. Mach. Zntell. 23, 501 (2001).
  7. C. Baillard and A. Zisserman, in Proceedings of the 19th ISPRS Congress 33 (2000).
  8. F. Taillandier and R. Deriche, in Proceedings of ISPRS Congress 35 (2004).
  9. X. Yang, T. Zhang, and Y. Lu, J. Infrared Milli. Terah. Waves 30, 468 (2009).
  10. X. Yang, T. Zhang, and L. Yan, Proc. SPIE 7495, 749531 (2009).
  11. T. Yu, Q. Li, and J. Dai, Chin. Opt. Lett. 7, 206 (2009)
  12. S. Gao, C. Li, and D. Bi, Chin. Opt. Lett. 8, 474 (2010)

2010

2009

X. Yang, T. Zhang, and Y. Lu, J. Infrared Milli. Terah. Waves 30, 468 (2009).

X. Yang, T. Zhang, and L. Yan, Proc. SPIE 7495, 749531 (2009).

T. Yu, Q. Li, and J. Dai, Chin. Opt. Lett. 7, 206 (2009)

2008

F. Lafarge, X. Descombes, J. Zerubia, and M. Pierrot-Deseilligny, ISPRS J. Photogram Rem. Sens. 63, 365 (2008).

2007

M. Ortner, X. Descombes, and J. Zerubia, Int. J. Comput. Vis. 72, 107 (2007).

2004

Z. Kim and R. Nevatia, Comput. Vis. Image Understand. 96, 60 (2004).

2001

M. Fradkin, H. Ma??tre, and M. Roux, Comput. Vis. Image Understand. 82, 181 (2001).

S. Noronha and R. Nevatia, IEEE Trans. Pattern. Anal. Mach. Zntell. 23, 501 (2001).

Bi, D.

Dai, J.

Descombes, X.

F. Lafarge, X. Descombes, J. Zerubia, and M. Pierrot-Deseilligny, ISPRS J. Photogram Rem. Sens. 63, 365 (2008).

M. Ortner, X. Descombes, and J. Zerubia, Int. J. Comput. Vis. 72, 107 (2007).

Fradkin, M.

M. Fradkin, H. Ma??tre, and M. Roux, Comput. Vis. Image Understand. 82, 181 (2001).

Gao, S.

Kim, Z.

Z. Kim and R. Nevatia, Comput. Vis. Image Understand. 96, 60 (2004).

Lafarge, F.

F. Lafarge, X. Descombes, J. Zerubia, and M. Pierrot-Deseilligny, ISPRS J. Photogram Rem. Sens. 63, 365 (2008).

Li, C.

Li, Q.

Lu, Y.

X. Yang, T. Zhang, and Y. Lu, J. Infrared Milli. Terah. Waves 30, 468 (2009).

Ma??tre, H.

M. Fradkin, H. Ma??tre, and M. Roux, Comput. Vis. Image Understand. 82, 181 (2001).

Nevatia, R.

Z. Kim and R. Nevatia, Comput. Vis. Image Understand. 96, 60 (2004).

S. Noronha and R. Nevatia, IEEE Trans. Pattern. Anal. Mach. Zntell. 23, 501 (2001).

Noronha, S.

S. Noronha and R. Nevatia, IEEE Trans. Pattern. Anal. Mach. Zntell. 23, 501 (2001).

Ortner, M.

M. Ortner, X. Descombes, and J. Zerubia, Int. J. Comput. Vis. 72, 107 (2007).

Pierrot-Deseilligny, M.

F. Lafarge, X. Descombes, J. Zerubia, and M. Pierrot-Deseilligny, ISPRS J. Photogram Rem. Sens. 63, 365 (2008).

Roux, M.

M. Fradkin, H. Ma??tre, and M. Roux, Comput. Vis. Image Understand. 82, 181 (2001).

Yan, L.

X. Yang, T. Zhang, and L. Yan, Proc. SPIE 7495, 749531 (2009).

Yang, X.

X. Yang, T. Zhang, and L. Yan, Proc. SPIE 7495, 749531 (2009).

X. Yang, T. Zhang, and Y. Lu, J. Infrared Milli. Terah. Waves 30, 468 (2009).

Yu, T.

Zerubia, J.

F. Lafarge, X. Descombes, J. Zerubia, and M. Pierrot-Deseilligny, ISPRS J. Photogram Rem. Sens. 63, 365 (2008).

M. Ortner, X. Descombes, and J. Zerubia, Int. J. Comput. Vis. 72, 107 (2007).

Zhang, T.

X. Yang, T. Zhang, and Y. Lu, J. Infrared Milli. Terah. Waves 30, 468 (2009).

X. Yang, T. Zhang, and L. Yan, Proc. SPIE 7495, 749531 (2009).

Chin. Opt. Lett.

Comput. Vis. Image Understand.

Z. Kim and R. Nevatia, Comput. Vis. Image Understand. 96, 60 (2004).

M. Fradkin, H. Ma??tre, and M. Roux, Comput. Vis. Image Understand. 82, 181 (2001).

IEEE Trans. Pattern. Anal. Mach. Zntell.

S. Noronha and R. Nevatia, IEEE Trans. Pattern. Anal. Mach. Zntell. 23, 501 (2001).

Int. J. Comput. Vis.

M. Ortner, X. Descombes, and J. Zerubia, Int. J. Comput. Vis. 72, 107 (2007).

ISPRS J. Photogram Rem. Sens.

F. Lafarge, X. Descombes, J. Zerubia, and M. Pierrot-Deseilligny, ISPRS J. Photogram Rem. Sens. 63, 365 (2008).

J. Infrared Milli. Terah. Waves

X. Yang, T. Zhang, and Y. Lu, J. Infrared Milli. Terah. Waves 30, 468 (2009).

Proc. SPIE

X. Yang, T. Zhang, and L. Yan, Proc. SPIE 7495, 749531 (2009).

Other

P. Saeedi and H. Zwick, in Proceedings of 10th Intl. Conf. of Control, Automation, Robotics and Vision 623 (2008).

C. Baillard and A. Zisserman, in Proceedings of the 19th ISPRS Congress 33 (2000).

F. Taillandier and R. Deriche, in Proceedings of ISPRS Congress 35 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.