Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 9,
  • Issue 12,
  • pp. 121902-
  • (2011)

Observation of two multiwave mixing processes via dualoptical pumping channels

Not Accessible

Your library or personal account may give you access

Abstract

Based on double optical pumping channels, we experimentally study the competition between two coexistent six-wave mixing (SWM) processes falling into two electromagnetically induced transparency windows by scanning the frequency of the probe field in two similar five-level atomic systems of <sup>85</sup>Rb. By blocking one optical pumping channel unrelated to the four-wave mixing (FWM) process, one SWM process, together with the FWM process, generated by a conjugated small-angle static grating could be observed in the spectrum. Moreover, the other SWM process obtained by blocking the first SWM channel is also observed together with the FWM process in a lower N-type four-level subsystem. These experimental results agree well with theoretical predictions.

© 2011 Chinese Optics Letters

PDF Article
More Like This
Interference of three multiwave mixings via electromagnetically induced transparency

Zhiguo Wang, Peiying Li, Huaibin Zheng, Suling Sang, Ruyi Zhang, Yanpeng Zhang, and Min Xiao
J. Opt. Soc. Am. B 28(8) 1922-1927 (2011)

Controlling Rydberg-dressed four-wave mixing via dual electromagnetically induced transparency windows

Zhaoyang Zhang, Haijun Tang, Irfan Ahmed, Noor Ahmed, Ghulam Abbas Khan, Abdul Rasheed Mahesar, and Yanpeng Zhang
J. Opt. Soc. Am. B 33(8) 1661-1667 (2016)

Observation of dressed odd-order multi-wave mixing in five-level atomic medium

Ning Li, Zhengyang Zhao, Haixia Chen, Peiying Li, Yueheng Li, Yan Zhao, Guozhen Zhou, Shuqiao Jia, and Yanpeng Zhang
Opt. Express 20(3) 1912-1929 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved