Abstract

An on-axis phase-shifting reflective point-diffraction microscopic interferometer for quantitative phase microscopy based on Michelson architecture is proposed. A cube beamsplitter splits the object wave spectrum into two copies within two arms. Reference wave is rebuilt in one arm by low-pass filtering on the object wave frequency spectrum with a pinhole-mask mirror, and interferes with the object wave from the other arm. Polarization phase-shifting is performed and phase imaging on microscale specimens is implemented. The experimental results demonstrate that the proposed scheme has the advantage of long-term stability due to its quasi common-path geometry with full use of laser energy.

© 2011 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription