Abstract

The influence of GaAs substrate on the transmission performance of a multi-film Fabry-Peerot filter (FPF), fabricated by metalorganic chemical vapor deposition epitaxial growth on GaAs substrate, is investigated using the transfer matrix method. On the basis of the theoretical simulation, we determine that the quality of the resonant transmission peak of this epitaxially grown FPF (EG-FPF) deteriorates through splitting when the substrate is taken into account. Rapid periodic oscillation of peak-transmittivity along with the alteration of substrate thickness is also observed in the simulation results. Finally, a remarkably improved transmission performance of the EG-FPF is obtained by thinning the substrate down to a suitable thickness range through well-controlled grinding and polishing.

© 2011 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription