Abstract

A novel concept for an optical multilayer ultrasonic hydrophone with the sensing film deposited on a triangular pyramid glass substrate is proposed. Using the calculation model for the spectral coefficients' derivatives of a dielectric multilayer optical coating, the acousto-optic sensitivity characteristic of the hydrophone is analyzed with different measurement laser polarizations and incident angles. We present a reasonable method and adjusting strategy for the optimum working point selection of the ultrasound measurement. Analytic results show that the novel hydrophone possesses all the other merits of a plate glass substrate optical multilayer hydrophone but with improved detection sensitivity. A longer measurement time without distortion decreases the difficulty of high frequency signal circuits. Spatial split of the ultrasound signal caused by the substrate's triangular pyramid roof simplifies the spatial spot area correction, which contributes to the accurate calibration of the hydrophone's wideband frequency response.

© 2011 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription