Abstract

Ultrafast spectroscopy of semiconductor saturable absorber mirror (SESAM) is measured using a femtosecond pump-probe experiment. This allows dynamic responses of SESAM in the cavity to be concluded by ultrafast spectroscopy. Change in reflection is measured as a function of pump-probe delay for different pump excitation fluences. Change of nonlinear reflection of SESAM is measured as a function of incident light energy density. When the excitation fluence increases, nonlinear change in ultrafast spectroscopy of SESAM becomes increasingly significant. When SESAM is pumped by an ultrahigh excitation fluence, the energy density of which is approximately 1400 \mu J/cm<sup>2</sup>, two-photon absorption can be observed visibly in its ultrafast spectroscopy.

© 2010 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription