Abstract

We use the three-dimensional finite-difference time-domain (3D-FDTD) method to model silica tapermicrofiber structures integrated on substrates. The dependence of the transmission on the length of the microfiber is investigated for two different structures. Optimization of the geometric parameters is provided and two substrate materials, namely MgF2 and fluorosilicate glass, are considered. We also investigate the case where the structure is covered with a dielectric material.

© 2010 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription