Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 8,
  • Issue 5,
  • pp. 502-504
  • (2010)

Investigation of mode radiation loss for microdisk resonators with pedestals by FDTD technique

Not Accessible

Your library or personal account may give you access

Abstract

Mode radiation loss for microdisk resonators with pedestals is investigated by three-dimensional (3D) finite-difference time-domain (FDTD) technique. For the microdisk with a radius of 1 \mu m, a thickness of 0.2 \mu m, and a refractive index of 3.4, on a pedestal with a refractive index of 3.17, the mode quality (Q) factor of the whispering-gallery mode (WGM) quasi-TE7;1 first increases with the increase of the radius of the pedestal, and then quickly decreases as the radius is larger than 0.75 \mu m. The mode radiation loss is mainly the vertical radiation loss induced by the mode coupling between the WGM and vertical radiation mode in the pedestal, instead of the scattering loss around the perimeter of the round pedestal. The WGM can keep the high Q factor when the mode coupling is forbidden.

© 2010 Chinese Optics Letters

PDF Article
More Like This
Investigation of mode characteristics for microdisk resonators by S-matrix and three-dimensional finite-difference time-domain technique

Xian-Shu Luo, Yong-Zhen Huang, Wei-Hua Guo, Qin Chen, Miao-Qing Wang, and Li-Juan Yu
J. Opt. Soc. Am. B 23(6) 1068-1073 (2006)

Investigation of mode coupling in a microdisk resonator for realizing directional emission

Yue-De Yang, Shi-Jiang Wang, and Yong-Zhen Huang
Opt. Express 17(25) 23010-23015 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.